已知,數(shù)學(xué)公式,數(shù)學(xué)公式,數(shù)學(xué)公式,…依據(jù)上述規(guī)律,猜想an=________,并簡要證明你的猜想.


分析:根據(jù)上述規(guī)律猜想:an=,理由為:由各項的第一個加數(shù)總結(jié)規(guī)律為:,第二個加數(shù)總結(jié)規(guī)律為,通分并利用同分母分式的加法法則計算,約分后將分母變形即可得證.
解答:猜想:an=,理由為:
證明:由題意:+==
==
點評:此題考查了分式的混合運算,分式的加減運算關(guān)鍵是通分,通分的關(guān)鍵是找最簡公分母;分式的乘除運算關(guān)鍵是約分,約分的關(guān)鍵是找公因式,約分時分式的分子分母出現(xiàn)多項式,應(yīng)將多項式分解因式后再約分.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知點P的坐標(biāo)為(m,0),在x軸上存在點Q(不與P點重合),以PQ為邊作正方形PQMN,使點M落在反比例函數(shù)y=-
2
x
的圖象上.小明對上述問題進(jìn)行了探究,發(fā)現(xiàn)不論m取何值,符合上述條件的正方形只有兩個,且一個正方形的頂點M在第四象限,另一個正方形的頂點M1在第二象限.
(1)如圖所示,若反比例函數(shù)解析式為y=-
2
x
,P點坐標(biāo)為(1,0),圖中已畫出一符合條件的一個正方形PQMN,請你在圖中畫出符合條件的另一個正方形PQ1M1N1,并寫出點M1的坐標(biāo);M1的坐標(biāo)是
 

(2)請你通過改變P點坐標(biāo),對直線M1M的解析式y(tǒng)﹦kx+b進(jìn)行探究可得k﹦
 
,若點P的坐標(biāo)為(m,0)時,則b﹦
 
;
(3)依據(jù)(2)的規(guī)律,如果點P的坐標(biāo)為(6,0),請你求出點M1和點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

24、閱讀下題及證明過程:已知:如圖,D是△ABC中BC邊上一點,E是AD上一點,EB=EC,∠ABE=∠ACE,求證:∠BAE=∠CAE.
證明:在△AEB和△AEC中,
∵EB=EC,∠ABE=∠ACE,AE=AE,
∴△AEB≌△AEC…第一步
∴∠BAE=∠CAE…第二步
問上面證明過程是否正確?若正確,請寫出每一步推理的依據(jù);若不正確,請指出錯在哪一步,并寫出你認(rèn)為正確的證明過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

看圖回答下面問題:
(1)如下圖,已知:直線m∥n,A、B為直線n上兩點,C、P為直線m上兩點.請寫出圖中,△ABC和△ABP面積之間的數(shù)量關(guān)系;
精英家教網(wǎng)
(2)如下圖,邊長為6的正三角形ABC,P是BC邊上一點,且PB=1,以PB為一邊作正三角形PBD,求△ADC的面積;
精英家教網(wǎng)
(3)如下圖,邊長為6的正三角形ABC,P是BC邊上一點,且PB=2,以PB為一邊作正三角形PBD,求△ADC的面積;
精英家教網(wǎng)
(4)根據(jù)上述計算的結(jié)果,你發(fā)現(xiàn)了怎樣的規(guī)律?提出自己的猜想并依據(jù)下圖予以證明;
精英家教網(wǎng)
(5)如下圖,有一塊正三角形的草皮ABC,由于某種原因,需要將三角形草皮ABE移植到三角形的草皮AEC的右側(cè),成為一塊新的三角形草皮ADC(A、E、D三點要在一條直線上),并保持其面積不變,請你畫圖說明如何確定點D的位置.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知M是線段AB的中點,點N在線段MB上,MN=
35
AM,若MN=3cm,求線段AB的長.(不寫依據(jù))
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在下面推理過程的括號內(nèi)填上推理的依據(jù)
已知,如圖所示,在?ABCD中,BF=DE.
求證:∠EAF=∠ECF
證明:∵四邊形ABCD是平行四邊形(
已知
已知

∴DC=AB(
平行四邊形的對邊相等
平行四邊形的對邊相等

DC∥AB(
平行四邊形的對邊相互平行
平行四邊形的對邊相互平行

又∵BF=DE(
已知
已知

∴AB-BF=DC-DE(
等量代換
等量代換

即AF=CE(
等量代換
等量代換

∴AF 
.
CE
∴四邊形AFCE是平行四邊形(
對邊平行且相等的四邊形是平行四邊形
對邊平行且相等的四邊形是平行四邊形

∴∠EAF=∠ECF(
平行四邊形的對角相等
平行四邊形的對角相等

查看答案和解析>>

同步練習(xí)冊答案