(2012•蘭州)在反比例函數(shù)y=
k
x
(k<0)
的圖象上有兩點(-1,y1),(-
1
4
,y2)
,則y1-y2的值是(  )
分析:反比例函數(shù)y=
k
x
:當(dāng)k<0時,該函數(shù)圖象位于第二、四象限,且在每一象限內(nèi),y隨x的增大而增大.
解答:解:∵反比例函數(shù)y=
k
x
中的k<0,
∴函數(shù)圖象位于第二、四象限,且在每一象限內(nèi),y隨x的增大而增大;
又∵點(-1,y1)和(-
1
4
,y2)
均位于第二象限,-1<-
1
4
,
∴y1<y2,
∴y1-y2<0,即y1-y2的值是負(fù)數(shù),
故選A.
點評:本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征.注意:反比例函數(shù)的增減性只指在同一象限內(nèi).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•蘭州)如圖,Rt△ABO的兩直角邊OA、OB分別在x軸的負(fù)半軸和y軸的正半軸上,O為坐標(biāo)原點,A、B兩點的坐標(biāo)分別為(-3,0)、(0,4),拋物線y=
2
3
x2+bx+c經(jīng)過點B,且頂點在直線x=
5
2
上.
(1)求拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)若把△ABO沿x軸向右平移得到△DCE,點A、B、O的對應(yīng)點分別是D、C、E,當(dāng)四邊形ABCD是菱形時,試判斷點C和點D是否在該拋物線上,并說明理由;
(3)在(2)的條件下,連接BD,已知對稱軸上存在一點P使得△PBD的周長最小,求出P點的坐標(biāo);
(4)在(2)、(3)的條件下,若點M是線段OB上的一個動點(點M與點O、B不重合),過點M作∥BD交x軸于點N,連接PM、PN,設(shè)OM的長為t,△PMN的面積為S,求S和t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍,S是否存在最大值?若存在,求出最大值和此時M點的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•蘭州)用扇形統(tǒng)計圖反應(yīng)地球上陸地面積與海洋面積所占比例時,陸地面積所對應(yīng)的圓心角是108°,當(dāng)宇宙中一塊隕石落在地球上,則落在陸地上的概率是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•蘭州)如圖,已知⊙O是以坐標(biāo)原點O為圓心,1為半徑的圓,∠AOB=45°,點P在x軸上運動,若過點P且與OA平行的直線與⊙O有公共點,設(shè)P(x,0),則x的取值范圍是
-
2
≤x≤
2
且x≠0
-
2
≤x≤
2
且x≠0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•蘭州)在建筑樓梯時,設(shè)計者要考慮樓梯的安全程度,如圖(1),虛線為樓梯的傾斜度,斜度線與地面的夾角為傾角θ,一般情況下,傾角越小,樓梯的安全程度越高;如圖(2)設(shè)計者為了提高樓梯的安全程度,要把樓梯的傾角θ1減至θ2,這樣樓梯所占用地板的長度由d1增加到d2,已知d1=4米,∠θ1=40°,∠θ2=36°,樓梯占用地板的長度增加率多少米?(計算結(jié)果精確到0.01米,參考數(shù)據(jù):tan40°=0.839,tan36°=0.727)

查看答案和解析>>

同步練習(xí)冊答案