【題目】如圖,AB∥DE,AB=DE,BF=EC.
(1)求證:AC∥DF;
(2)若CF=1個單位長度,能由△ABC經(jīng)過圖形變換得到△DEF嗎?若能,請你用軸對稱、平移或旋轉(zhuǎn)等描述你的圖形變換過程;若不能,說明理由.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C、G是⊙O上兩點,且AC=CG,過點C的直線CD⊥BG于點D,交BA的延長線于點E,連接BC,交OD于點F.
(1)求證:CD是⊙O的切線.
(2)若,求∠E的度數(shù).
(3)連接AD,在2的條件下,若CD=,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的一元二次方程(a﹣1)x2﹣2x+2=0有實數(shù)根,則整數(shù)a的最大值為( 。
A.-1
B.0
C.1
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點M的坐標(biāo)是(5,4),⊙M與y軸相切于點C,與x軸相交于A,B兩點.
(1)則點A,B,C的坐標(biāo)分別是A( , ),B( , ),C( , );
(2)設(shè)經(jīng)過A,B兩點的拋物線解析式為y=(x﹣5)2+k,它的頂點為E,求證:直線EA與⊙M相切;
(3)在拋物線的對稱軸上,是否存在點P,且點P在x軸的上方,使△PBC是等腰三角形?如果存在,請求出點P的坐標(biāo);如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣2x+2與兩坐標(biāo)軸分別交于A、B兩點,將線段OA分成n等份,分點分別為P1 , P2 , P3 , …,Pn﹣1 , 過每個分點作x軸的垂線分別交直線AB于點T1 , T2 , T3 , …,Tn﹣1 , 用S1 , S2 , S3 , …,Sn﹣1分別表示Rt△T1OP1 , Rt△T2P1P2 , …,Rt△Tn﹣1Pn﹣2Pn﹣1的面積,則當(dāng)n=2015時,S1+S2+S3+…+Sn﹣1= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=5,依次連接△A1B1C1三邊中點,得△A2B2C2 , 再依次連接△A2B2C2的三邊中點得△A3B3C3 , …,則△A5B5C5的周長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,折疊矩形OABC的一邊BC,使點C落在OA邊的點D處,已知折痕BE=,且=,以O(shè)為原點,OA所在的直線為x軸建立如圖所示的平面直角坐標(biāo)系,拋物線l:y=x2+x+c經(jīng)過點E,且與AB邊相交于點F.
(1)求證:△ABD∽△ODE;
(2)若M是BE的中點,連接MF,求證:MF⊥BD;
(3)P是線段BC上一點,點Q在拋物線l上,且始終滿足PD⊥DQ,在點P運動過程中,能否使得PD=DQ?若能,求出所有符合條件的Q點坐標(biāo);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的內(nèi)接四邊形ABCD兩組對邊的延長線分別交于點E、F.
(1)若∠E=∠F時,求證:∠ADC=∠ABC;
(2)(2)若∠E=∠F=42°時,求∠A的度數(shù)
(3)(3)若∠E=α,∠F=β,且α≠β.請你用含有α、β的代數(shù)式表示∠A的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A(﹣4,),B(﹣1,2)是一次函數(shù)y1=ax+b與反比例函數(shù)y2=圖象的兩個交點,AC⊥x軸于點C,BD⊥y軸于點D.
(1)根據(jù)圖象直接回答:在第二象限內(nèi),當(dāng)x取何值時,y1﹣y2>0?
(2)求一次函數(shù)解析式及m的值;
(3)P是線段AB上一點,連接PC,PD,若△PCA和△PDB面積相等,求點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com