如圖,在梯形ABCD中,AB∥CD,∠A=∠B,E是AB邊上的點(diǎn),且DE=CE.求證:AE=BE.

證明:∵AB∥CD,
∴∠EDC=∠AED,∠DCE=∠BEC.
∵CE=DE,
∴∠EDC=∠DCE.
∴∠AED=∠BEC.
又∵ED=ED,∠A=∠B,
∴△ADE≌△BCE.
∴AE=BE.
分析:要證明AE=BE,可證明三角形ADE和BCE全等,這兩個三角形中,已知的條件有ED=ED,∠A=∠B,只要再證得一組對應(yīng)角相等即可.CD∥AB,我們可得出∠EDC=∠AED,∠DCE=∠BEC,又根據(jù)CE=DE,那么∠EDC=∠DCE,因此∠AED=∠BEC,這樣就構(gòu)成了全等三角形判定中的AAS,所以兩三角形就全等.
點(diǎn)評:此題考查簡單的線段相等,可以通過全等三角形來證明,判定兩個三角形全等,先根據(jù)已知條件或求證的結(jié)論確定三角形,然后再根據(jù)三角形全等的判定方法,看缺什么條件,再去證什么條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

11、如圖,在梯形ABCD中,AB∥CD,對角線AC、BD交于點(diǎn)O,則S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,AB⊥AD,對角線BD⊥DC.
(1)求證:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,則梯形面積S梯形ABCD=
38.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD為直徑的半圓O切AB于點(diǎn)E,這個梯形的面積為21cm2,周長為20cm,那么半圓O的半徑為( 。
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步練習(xí)冊答案