如圖,已知拋物線y=-x2+bx+c與x軸負(fù)半軸交于點(diǎn)A,與y軸正半軸交于點(diǎn)B,且OA=OB.
(1)求b+c的值;
(2)若點(diǎn)C在拋物線上,且四邊形OABC是平行四邊形,求拋物線的解析式;
(3)在(2)條件下,點(diǎn)P(不與A、C重合)是拋物線上的一點(diǎn),點(diǎn)M是y軸上一點(diǎn),當(dāng)△BPM是等腰直角三角形時(shí),求點(diǎn)M的坐標(biāo).
(1)∵拋物線y=-x2+bx+c與y軸正半軸交于B點(diǎn),
∴點(diǎn)B的坐標(biāo)為(0,c),
∵OA=OB,
∴點(diǎn)A的坐標(biāo)為(-c,0),將點(diǎn)A(-c,0)代入y=y=-x2+bx+c,得-c2-bc+c=0,
∵c≠0,整理得b+c=1;

(2)如圖,如果四邊形OABC是平行四邊形,那么COAB,BCAO,
∴點(diǎn)C的坐標(biāo)可以表示為(c,c),
當(dāng)點(diǎn)C(c,c)落在拋物線y=-x2+bx+c上時(shí),得-c2+bc+c=c,
整理得b=c,
結(jié)合(1)問(wèn)c+b=1,得b=c=
1
2
,
故此時(shí)拋物線的解析式為y=-x2+
1
2
x+
1
2
;

(3)△BPM是等腰直角三角形,設(shè)點(diǎn)P的坐標(biāo)為(x,-x2+
1
2
x+
1
2
),
由BM=PM,列方程
1
2
-(-x2+
1
2
x+
1
2
)=x,解得x=
3
2
或x=0(舍去),
所以當(dāng)x=
3
2
時(shí),y=-(
3
2
)
2
+
1
2
×
3
2
+
1
2
=-1,
點(diǎn)M1的坐標(biāo)為(0,-1),
同理當(dāng)BP=PM時(shí),求出M2點(diǎn)的坐標(biāo)為(0,-
5
2
),
綜上點(diǎn)M的坐標(biāo)為(0,-1)或(0,-
5
2
).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(-4,0),B(-1,3),C(-3,3)
(1)求此二次函數(shù)的解析式;
(2)設(shè)此二次函數(shù)的對(duì)稱軸為直線l,該圖象上的點(diǎn)P(m,n)在第三象限,其關(guān)于直線l的對(duì)稱點(diǎn)為M,點(diǎn)M關(guān)于y軸的對(duì)稱點(diǎn)為N,若四邊形OAPN的面積為20,求m、n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,以點(diǎn)0′(-2,-3)為圓心,5為半徑的圓交x軸于A、B兩點(diǎn),過(guò)點(diǎn)B作⊙O′的切線,交y軸于點(diǎn)C,過(guò)點(diǎn)0′作x軸的垂線MN,垂足為D,一條拋物線(對(duì)稱軸與y軸平行)經(jīng)過(guò)A、B兩點(diǎn),且頂點(diǎn)在直線BC上.
(1)求直線BC的解析式;
(2)求拋物線的解析式;
(3)設(shè)拋物線與y軸交于點(diǎn)P,在拋物線上是否存在一點(diǎn)Q,使四邊形DBPQ為平行四邊形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:在如圖1所示的平面直角坐標(biāo)系xOy中,A,C兩點(diǎn)的坐標(biāo)分別為A(2,3),C(n,-3)(其中n>0),點(diǎn)B在x軸的正半軸上.動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在四邊形OABC的邊上依次沿O-A-B-C的順序向點(diǎn)C移動(dòng),當(dāng)點(diǎn)P與點(diǎn)C重合時(shí)停止運(yùn)動(dòng).設(shè)點(diǎn)P移動(dòng)的路徑的長(zhǎng)為l,△POC的面積為S,S與l的函數(shù)關(guān)系的圖象如圖2所示,其中四邊形ODEF是等腰梯形.

(1)結(jié)合以上信息及圖2填空:圖2中的m=______;
(2)求B,C兩點(diǎn)的坐標(biāo)及圖2中OF的長(zhǎng);
(3)在圖1中,當(dāng)動(dòng)點(diǎn)P恰為經(jīng)過(guò)O,B兩點(diǎn)的拋物線W的頂點(diǎn)時(shí),
①求此拋物線W的解析式;
②若點(diǎn)Q在直線y=-1上方的拋物線W上,坐標(biāo)平面內(nèi)另有一點(diǎn)R,滿足以B,P,Q,R四點(diǎn)為頂點(diǎn)的四邊形是菱形,求點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,半徑為1的動(dòng)圓P圓心在拋物線y=(x-2)2-1上,當(dāng)⊙P與x軸相切時(shí),點(diǎn)P的坐標(biāo)為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某工廠準(zhǔn)備翻建新的廠門,廠門要求設(shè)計(jì)成軸對(duì)稱的拱型曲線.已知廠門的最大寬度AB=12m,最大高度OC=4m,工廠的特種運(yùn)輸卡車的高度是3m,寬度是5.8m.現(xiàn)設(shè)計(jì)了兩種方案:方案一:建成拋物線形狀;方案二:建成圓弧形狀(如圖).為確保工廠的特種卡車在通過(guò)廠門時(shí)更安全,你認(rèn)為應(yīng)采用哪種設(shè)計(jì)方案?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

兩個(gè)直角邊為6的全等的等腰直角三角形Rt△AOB和Rt△CED,按如圖一所示的位置放置,點(diǎn)O與E重合.
(1)Rt△AOB固定不動(dòng),Rt△CED沿x軸以每秒2個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),當(dāng)點(diǎn)E運(yùn)動(dòng)到與點(diǎn)B重合時(shí)停止,設(shè)運(yùn)動(dòng)x秒后,Rt△AOB和Rt△CED的重疊部分面積為y,求y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)Rt△CED以(1)中的速度和方向運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間x=2秒時(shí),Rt△CED運(yùn)動(dòng)到如圖二所示的位置,若拋物線y=
1
4
x2+bx+c過(guò)點(diǎn)A,G,求拋物線的解析式;
(3)現(xiàn)有一動(dòng)點(diǎn)P在(2)中的拋物線上運(yùn)動(dòng),試問(wèn)點(diǎn)P在運(yùn)動(dòng)過(guò)程中是否存在點(diǎn)P到x軸或y軸的距離為2的情況?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

改革開(kāi)放后,不少農(nóng)村用上了自動(dòng)噴灌設(shè)備.如圖所示,AB表示水管,在B處有一個(gè)自動(dòng)旋轉(zhuǎn)的噴水頭,一瞬間噴出的水是拋物線狀,建立如圖所示的直角坐標(biāo)系后,拋物線的表達(dá)式為y=-
1
2
x2+2x+
3
2

(1)當(dāng)x=1時(shí),噴出的水離地面多高?
(2)你能求出水的落地點(diǎn)距水管底部A的最遠(yuǎn)距離嗎?
(3)水管有多高?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=-x2+2x+3與x軸交于A、B兩點(diǎn),與y軸于點(diǎn)C,點(diǎn)D為對(duì)稱軸l上的一個(gè)動(dòng)點(diǎn).
(1)求當(dāng)AD+CD最小時(shí),點(diǎn)D的坐標(biāo);
(2)以點(diǎn)A為圓心,以AD為半徑作⊙A
①證明:當(dāng)AD+CD最小時(shí),直線BD與⊙A相切.
②寫出直線BD與⊙A相切時(shí),D點(diǎn)的另一個(gè)坐標(biāo)______.

查看答案和解析>>

同步練習(xí)冊(cè)答案