【題目】在△ABC中,角A、B、C的對邊分別為a,b,c,且bcosC=(2a﹣c)cosB.
(1)求角B的大。
(2)已知b= ,BD為AC邊上的高,求BD的取值范圍.

【答案】
(1)解:由bcosC=(2a﹣c)cosB得b =(2a﹣c) ,

化簡得a2+c2﹣b2=ac,∴cosB=

∵B∈(0,π),∴B=


(2)解:設BD為AC邊上的高為h,

∵s= ,∴h= =ac,

由余弦定理得b2=a2+c2﹣2accosBa2+c2﹣ac=33≥2ac﹣ac,

∴ac≤3,∴h= =ac≤3.

故BD的取值范圍為(0,3]


【解析】(1)由bcosC=(2a﹣c)cosB得a2+c2﹣b2=ac,∴cosB= ,即B= .(2)設BD為AC邊上的高為h由s= ,得h= =ac,由余弦定理得b2=a2+c2﹣2accosB3≥2ac﹣ac,即ac≤3,即h= =ac≤3,從而可得BD的取值范圍

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙、丙三人投擲飛鏢,他們的成績(環(huán)數(shù))如下面的頻數(shù)條統(tǒng)計圖所示.則甲、乙、丙三人的訓練成績方差S2 , S2 , S2的大小關系是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面給出四種說法: ①用相關指數(shù)R2來刻畫回歸效果,R2越小,說明模型的擬合效果越好;
②命題P:“x0∈R,x02﹣x0﹣1>0”的否定是¬P:“x∈R,x2﹣x﹣1≤0”;
③設隨機變量X服從正態(tài)分布N(0,1),若P(x>1)=p,則P(﹣1<X<0)= ﹣p
④回歸直線一定過樣本點的中心( , ).
其中正確的說法有(請將你認為正確的說法的序號全部填寫在橫線上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在三棱柱ABC﹣A1B1C1中,側面ABB1A1為矩形,AB= ,AA1=2,D為AA1的中點,BD與AB1交于點O,CO⊥側面ABB1A1
(1)證明:CD⊥AB1
(2)若OC=OA,求直線C1D與平面ABC所成角的正弦值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知A,B為拋物線E:y2=2px(p>0)上異于頂點O的兩點,△AOB是等邊三角形,其面積為48 ,則p的值為(
A.2
B.2
C.4
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),其中0≤α<π.在以O為極點,x軸的正半軸為極軸的極坐標系中,曲線C1:ρ=4cosθ.直線l與曲線C1相切.
(1)將曲線C1的極坐標方程化為直角坐標方程,并求α的值.
(2)已知點Q(2,0),直線l與曲線C2:x2+ =1交于A,B兩點,求△ABQ的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某一公路的道路維修工程,準備從甲、乙兩個工程隊選一個隊單獨完成.根據(jù)兩隊每天的工程費用和每天完成的工程量可知,若由兩隊合做此項維修工程,6天可以完成,共需工程費用385200元,若單獨完成此項維修工程,甲隊比乙隊少用5天,每天的工程費用甲隊比乙隊多4000元,從節(jié)省資金的角度考慮,應該選擇哪個工程隊?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(列方程(組)及不等式解應用題)
春節(jié)期間,某商場計劃購進甲、乙兩種商品,已知購進甲商品2件和乙商品3件共需270元;購進甲商品3件和乙商品2件共需230元.
(1)求甲、乙兩種商品每件的進價分別是多少元?
(2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請你求出獲利最大的進貨方案,并確定最大利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,點D在△ABC的內部且DB=DC,點E,F(xiàn)在△ABC的外部,F(xiàn)B=FA,EA=EC,∠FBA=∠DBC=∠ECA.

(1)①填空:△ACE∽;
(2)求證:△CDE∽△CBA;
(3)求證:△FBD≌△EDC;
(4)若點D在∠BAC的平分線上,判斷四邊形AFDE的形狀,并說明理由.

查看答案和解析>>

同步練習冊答案