(2010•欽州)如圖,為測量一幢大樓的高度,在地面上距離樓底O點(diǎn)20m的點(diǎn)A處,測得樓頂B點(diǎn)的仰角∠OAB=65°,則這幢大樓的高度為(結(jié)果保留3個有效數(shù)字)( )

A.42.8m
B.42.80m
C.42.9m
D.42.90m
【答案】分析:Rt△ABO中,知道了已知角的鄰邊求對邊,利用正切函數(shù)求解即可.
解答:解:Rt△ABO中,OA=20,∠BAO=65°,
∴OB=OA•tan65°≈42.9(米).
故選C.
點(diǎn)評:本題考查仰角的定義,要求學(xué)生能借助仰角構(gòu)造直角三角形并解直角三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《三角形》(11)(解析版) 題型:解答題

(2010•欽州)如圖,將OA=6,AB=4的矩形OABC放置在平面直角坐標(biāo)系中,動點(diǎn)M、N以每秒1個單位的速度分別從點(diǎn)A、C同時出發(fā),其中點(diǎn)M沿AO向終點(diǎn)O運(yùn)動,點(diǎn)N沿CB向終點(diǎn)B運(yùn)動,當(dāng)兩個動點(diǎn)運(yùn)動了t秒時,過點(diǎn)N作NP⊥BC,交OB于點(diǎn)P,連接MP.
(1)點(diǎn)B的坐標(biāo)為______;用含t的式子表示點(diǎn)P的坐標(biāo)為______;
(2)記△OMP的面積為S,求S與t的函數(shù)關(guān)系式(0<t<6);并求t為何值時,S有最大值?
(3)試探究:當(dāng)S有最大值時,在y軸上是否存在點(diǎn)T,使直線MT把△ONC分割成三角形和四邊形兩部分,且三角形的面積是△ONC面積的?若存在,求出點(diǎn)T的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年廣西欽州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•欽州)如圖,將OA=6,AB=4的矩形OABC放置在平面直角坐標(biāo)系中,動點(diǎn)M、N以每秒1個單位的速度分別從點(diǎn)A、C同時出發(fā),其中點(diǎn)M沿AO向終點(diǎn)O運(yùn)動,點(diǎn)N沿CB向終點(diǎn)B運(yùn)動,當(dāng)兩個動點(diǎn)運(yùn)動了t秒時,過點(diǎn)N作NP⊥BC,交OB于點(diǎn)P,連接MP.
(1)點(diǎn)B的坐標(biāo)為______;用含t的式子表示點(diǎn)P的坐標(biāo)為______;
(2)記△OMP的面積為S,求S與t的函數(shù)關(guān)系式(0<t<6);并求t為何值時,S有最大值?
(3)試探究:當(dāng)S有最大值時,在y軸上是否存在點(diǎn)T,使直線MT把△ONC分割成三角形和四邊形兩部分,且三角形的面積是△ONC面積的?若存在,求出點(diǎn)T的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年廣西欽州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•欽州)如圖,為測量一幢大樓的高度,在地面上距離樓底O點(diǎn)20m的點(diǎn)A處,測得樓頂B點(diǎn)的仰角∠OAB=65°,則這幢大樓的高度為(結(jié)果保留3個有效數(shù)字)( )

A.42.8m
B.42.80m
C.42.9m
D.42.90m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年廣西欽州市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•欽州)如圖是一張直角三角形的紙片,兩直角邊AC=6cm、BC=8cm,現(xiàn)將△ABC折疊,使點(diǎn)B與點(diǎn)A重合,折痕為DE,則BE的長為( )

A.4cm
B.5cm
C.6cm
D.10cm

查看答案和解析>>

同步練習(xí)冊答案