【題目】如圖,在平行四邊形中,點是邊的中點,連接并延長,交延長線于點連接.

(1)求證:四邊形是平行四邊形;

(2)若,則當 時,四邊形是矩形.

【答案】(1)證明見解析;(2)100°

【解析】

試題分析:(1)由AAS證明BOE≌△COD,得出OE=OD,即可得出結論;

(2)由平行四邊形的性質得出BCD=A=50°,由三角形的外角性質求出ODC=BCD,得出OC=OD,證出DE=BC,即可得出結論.

試題解析:(1)四邊形ABCD為平行四邊形,

ABDC,AB=CD,

∴∠OEB=ODC,

O為BC的中點,

BO=CO,

BOE和COD中,

∴△BOE≌△COD(AAS);

OE=OD,

四邊形BECD是平行四邊形;

(2)若A=50°,則當BOD=100°時,四邊形BECD是矩形.理由如下:

四邊形ABCD是平行四邊形,

∴∠BCD=A=50°,

∵∠BOD=BCD+ODC,

∴∠ODC=100°-50°=50°=BCD,

OC=OD,

BO=CO,OD=OE,

DE=BC,

四邊形BECD是平行四邊形,

四邊形BECD是矩形;

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】分解因式:ab4﹣4ab3+4ab2=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近期浙江大學的科學家們研制出今為止世界上最輕的材料,這種被稱為“全碳氣凝膠”的固態(tài)材料密度僅每立方厘米0.00016克,數(shù)據(jù)0.00016用科學記數(shù)法表示應是( )
A.1.6×104
B.0.16×103
C.1.6×104
D.16×105

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將邊長為的正三角形紙片按如下順序進行兩次折疊,展開后,得折痕(如圖),點為其交點.

(1)探求的數(shù)量關系,并說明理由;

(2)如圖,若分別為上的動點.

的長度取得最小值時,求的長度;

如圖,若點在線段上,,則的最小值= .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在△ABC中,AB=AC,點D是BC的中點,點E在AD上.

(1)求證:BE=CE;
(2)如圖2,若BE的延長線交AC于點F,且BF⊥AC,垂足為F,∠BAC=45°,原題設其它條件不變.求證:△AEF≌△BCF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】兩組鄰邊分別相等的四邊形叫做“箏形”,如圖,四邊形ABCD是一個箏形,其中AD=CD,AB=CB,在探究箏形的性質時,得到如下結論:①△ABD≌△CBD;②AC⊥BD;③四邊形ABCD的面積= ACBD,其中正確的結論有( )
A.①②
B.①③
C.②③
D.①③②

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖△ABC與△CDE都是等邊三角形,且∠EBD=65°,則∠AEB的度數(shù)是( )
A.115°
B.120°
C.125°
D.130°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,點分別在上(點與點不重合),且.將繞點逆時針旋轉得到.當的斜邊、直角邊與分別相交于點(點與點不重合)時,設.

(1)求證:;

(2)求關于的函數(shù)解析式,并直接寫出自變量的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線的對稱軸是直線,與軸交于兩點,與軸交于點,點的坐標為,點為拋物線上的一個動點,過點軸于點,交直線于點.

(1)求拋物線解析式;

(2)若點在第一象限內,當時,求四邊形的面積;

(3)在(2)的條件下,若點為直線上一點,點為平面直角坐標系內一點,是否存在這樣的點和點,使得以點為頂點的四邊形是菱形?若存在上,直接寫出點的坐標;若不存在,請說明理由.

【溫馨提示:考生可以根據(jù)題意,在備用圖中補充圖形,以便探究】

查看答案和解析>>

同步練習冊答案