【題目】如圖,在平行四邊形中,點是邊的中點,連接并延長,交延長線于點連接.
(1)求證:四邊形是平行四邊形;
(2)若,則當 時,四邊形是矩形.
【答案】(1)證明見解析;(2)100°
【解析】
試題分析:(1)由AAS證明△BOE≌△COD,得出OE=OD,即可得出結論;
(2)由平行四邊形的性質得出∠BCD=∠A=50°,由三角形的外角性質求出∠ODC=∠BCD,得出OC=OD,證出DE=BC,即可得出結論.
試題解析:(1)∵四邊形ABCD為平行四邊形,
∴AB∥DC,AB=CD,
∴∠OEB=∠ODC,
又∵O為BC的中點,
∴BO=CO,
在△BOE和△COD中,
,
∴△BOE≌△COD(AAS);
∴OE=OD,
∴四邊形BECD是平行四邊形;
(2)若∠A=50°,則當∠BOD=100°時,四邊形BECD是矩形.理由如下:
∵四邊形ABCD是平行四邊形,
∴∠BCD=∠A=50°,
∵∠BOD=∠BCD+∠ODC,
∴∠ODC=100°-50°=50°=∠BCD,
∴OC=OD,
∵BO=CO,OD=OE,
∴DE=BC,
∵四邊形BECD是平行四邊形,
∴四邊形BECD是矩形;
科目:初中數(shù)學 來源: 題型:
【題目】近期浙江大學的科學家們研制出今為止世界上最輕的材料,這種被稱為“全碳氣凝膠”的固態(tài)材料密度僅每立方厘米0.00016克,數(shù)據(jù)0.00016用科學記數(shù)法表示應是( )
A.1.6×104
B.0.16×10﹣3
C.1.6×10﹣4
D.16×10﹣5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將邊長為的正三角形紙片按如下順序進行兩次折疊,展開后,得折痕(如圖①),點為其交點.
(1)探求與的數(shù)量關系,并說明理由;
(2)如圖②,若分別為上的動點.
①當的長度取得最小值時,求的長度;
②如圖③,若點在線段上,,則的最小值= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,AB=AC,點D是BC的中點,點E在AD上.
(1)求證:BE=CE;
(2)如圖2,若BE的延長線交AC于點F,且BF⊥AC,垂足為F,∠BAC=45°,原題設其它條件不變.求證:△AEF≌△BCF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩組鄰邊分別相等的四邊形叫做“箏形”,如圖,四邊形ABCD是一個箏形,其中AD=CD,AB=CB,在探究箏形的性質時,得到如下結論:①△ABD≌△CBD;②AC⊥BD;③四邊形ABCD的面積= ACBD,其中正確的結論有( )
A.①②
B.①③
C.②③
D.①③②
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖△ABC與△CDE都是等邊三角形,且∠EBD=65°,則∠AEB的度數(shù)是( )
A.115°
B.120°
C.125°
D.130°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在中,,,點分別在上(點與點不重合),且.將繞點逆時針旋轉得到.當的斜邊、直角邊與分別相交于點(點與點不重合)時,設.
(1)求證:;
(2)求關于的函數(shù)解析式,并直接寫出自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線的對稱軸是直線,與軸交于兩點,與軸交于點,點的坐標為,點為拋物線上的一個動點,過點作軸于點,交直線于點.
(1)求拋物線解析式;
(2)若點在第一象限內,當時,求四邊形的面積;
(3)在(2)的條件下,若點為直線上一點,點為平面直角坐標系內一點,是否存在這樣的點和點,使得以點為頂點的四邊形是菱形?若存在上,直接寫出點的坐標;若不存在,請說明理由.
【溫馨提示:考生可以根據(jù)題意,在備用圖中補充圖形,以便探究】
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com