精英家教網(wǎng)如圖,Rt△ABC中,AC⊥BC,CD⊥AB于D,AC=8,BC=6,則AD=
 
分析:由于AC⊥BC,CD⊥AB,可得一組對(duì)應(yīng)角相等,再加上一對(duì)公共角,可證△ACD∽△ABC,利用比例線段可求AD.(可先利用勾股定理求出AB)
解答:解:∵AC⊥BC,CD⊥AB,
∴∠ACB=90°,∠ADC=90°,∠A=∠A,
∴△ADC∽△ACB,
AD
AC
=
AC
AB

又∵在Rt△ABC中,AB=
AC2+BC2
=
82+62 
=10,
AD
8
=
8
10
,AD=6.4.
點(diǎn)評(píng):解答此題不僅用到相似三角形的性質(zhì),還要結(jié)合勾股定理求出相應(yīng)的邊長(zhǎng),方可進(jìn)行計(jì)算.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,Rt△ABC中,∠ACB=90°,∠CAB=30°,用圓規(guī)和直尺作圖,用兩種方法把它分成兩個(gè)三角形,且要求其中一個(gè)三角形是等腰三角形.(保留作圖痕跡,不要求寫作法和證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,Rt△ABC中,∠ACB=90°,tanB=
34
,D是BC點(diǎn)邊上一點(diǎn),DE⊥AB于E,CD=DE,AC+CD=18.
(1)求BC的長(zhǎng)(2)求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△ABC中,∠C=90°,BC=3,AC=4,若△ABC∽△BDC,則CD=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△ABC中,∠C=90°,△ABC的內(nèi)切圓⊙0與BC、CA、AB分別切于點(diǎn)D、E、F.
(1)若BC=40cm,AB=50cm,求⊙0的半徑;
(2)若⊙0的半徑為r,△ABC的周長(zhǎng)為ι,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,Rt△ABC中,∠ABC=90゜,BD⊥AC于D,∠CBD=α,AB=3,BC=4.
(1)求sinα的值; 
(2)求AD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案