⊙O1與⊙O2的半徑分別為4cm和5cm,若兩圓相外切,若⊙O1與⊙O2相外切,則圓心距O1O2=
9
9
cm.
分析:由⊙O1和⊙O2的半徑分別為4cm和5cm,⊙O1和⊙O2相外切,d=r+R可求得圓心距O1O2的值.
解答:解:∵⊙O1和⊙O2的半徑分別為4cm和5cm,⊙O1和⊙O2相外切,
∴圓心距O1O2=4+5=9(cm).
故答案為:9.
點評:此題考查了圓與圓的位置關(guān)系.注意掌握兩圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系是解此題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,AB是⊙O1與⊙O2的公共弦,O1在⊙O2上,BD,O1C分別是⊙O1與⊙O2的直徑,CA與BD精英家教網(wǎng)的延長線交于E點,AB與O1C相交于M點.
(1)求證:EA是⊙O1的切線;
(2)連接AD,求證:AD∥O1C;
(3)若DE=1,設(shè)⊙O1與⊙O2的半徑分別為r,R,且
r
R
=
1
2
,求r的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、已知⊙O1與⊙O2的半徑r1、r2分別是方程x2-6x+8=0的兩實根,若⊙O1與⊙O2的圓心距d=5,則⊙O1與⊙O2的位置關(guān)系
相交

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知⊙O1與⊙O2的半徑分別為7和5,且⊙O1與⊙O2相切,則O1O2等于
2或12
2或12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•畢節(jié)地區(qū))已知⊙O1與⊙O2的半徑分別是a,b,且a、b滿足|a-2|+
3-b
=0
,圓心距O1O2=5,則兩圓的位置關(guān)系是
外切
外切

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

⊙O1與⊙O2的半徑分別為2和5,當O1O2=2.5時,兩圓的位置關(guān)系是
內(nèi)含
內(nèi)含

查看答案和解析>>

同步練習冊答案