現(xiàn)有A、B兩枚均勻的小立方體(立方體的每個(gè)面上分別標(biāo)有數(shù)字1、2、3、4、5、6),小明用擲A立方體朝上的數(shù)字為x,擲B立方體朝上的數(shù)字為y來(lái)確定點(diǎn)P(x,y),則小明各擲一次確定的點(diǎn)P落在已知拋物線y=-x2+4x+3上的概率是   
【答案】分析:依據(jù)題意先用列表法或畫(huà)樹(shù)狀圖法分析所有等可能的出現(xiàn)結(jié)果,求得小明各擲一次確定的點(diǎn)P落在已知拋物線y=-x2+4x+3上的情況數(shù),然后根據(jù)概率公式即可求出該事件的概率.
解答:解:列表得:
(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)
(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)
(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)
(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)
(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)
(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)
∴一共有36種等可能的結(jié)果,
小明各擲一次確定的點(diǎn)P落在已知拋物線y=-x2+4x+3上的有(1,6),(3,6),(4,3)共3種,
∴小明各擲一次確定的點(diǎn)P落在已知拋物線y=-x2+4x+3上的概率是=
故答案為:
點(diǎn)評(píng):本題考查的是用列表法或畫(huà)樹(shù)狀圖法求概率.列表法或畫(huà)樹(shù)狀圖法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件.用到的知識(shí)點(diǎn)為:概率=所求情況數(shù)與總情況數(shù)之比.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(課改)現(xiàn)有A、B兩枚均勻的小立方體(立方體的每個(gè)面上分別標(biāo)有數(shù)字1,2,3,4,5,6).用小莉擲A立方體朝上的數(shù)字為x小明擲B立方體朝上的數(shù)字為y來(lái)確定點(diǎn)P(x,y),那么它們各擲一次所確定的點(diǎn)P落在已知拋物線y=-x2+4x上的概率為(  )
A、
1
18
B、
1
12
C、
1
9
D、
1
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

現(xiàn)有A、B兩枚均勻的小立方體(立方體的每個(gè)面上分別標(biāo)有數(shù)字1,2,3,4,5,6).用小莉擲A立方體朝上的數(shù)字為x、小明擲B立方體朝上的數(shù)字為y來(lái)確定點(diǎn)P(x,y),那么他們各擲一次所確定的點(diǎn)P落在雙曲線y=
6
x
上的概率為( 。
A、
1
9
B、
2
3
C、
1
18
D、
1
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

現(xiàn)有A、B兩枚均勻的小立方體骰子(立方體的每個(gè)面上分別標(biāo)有數(shù)字1,2,3,4,5,6).用小莉擲A立方體朝上的數(shù)字為x、小明擲B立方體朝上的數(shù)字為y來(lái)確定點(diǎn)P(x,y),那么它們各擲一次所確定的點(diǎn)P落在已知直線y=2x上的概率為( 。
A、
1
18
B、
1
12
C、
1
9
D、
1
6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

現(xiàn)有A、B兩枚均勻的正方體骰子(六個(gè)面上分別標(biāo)有數(shù)字1到6).小明擲A正方體朝上的數(shù)字x,小亮擲B正方體朝上的數(shù)字y,分別作點(diǎn)P的橫坐標(biāo)和縱坐標(biāo),那么他們各擲一次所確定的點(diǎn)P(x,y)落在如圖所示的矩形內(nèi)(含邊界)的概率是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

現(xiàn)有A、B兩枚均勻的小立方體,立方體的每個(gè)面上分別標(biāo)有數(shù)字1,2,3,4,5,6.用小莉擲A立方體朝上的數(shù)字為x,小明擲B立方體朝上的數(shù)字為y來(lái)確定點(diǎn)P(x,y),那么它們各擲一次所確定的點(diǎn)P落在已知拋物線y=-x2+4x上的概率為
1
12
1
12

查看答案和解析>>

同步練習(xí)冊(cè)答案