【題目】已知,矩形ABCD中,AB=4 cm,BC=8 cm,AC的垂直平分線EF分別交AD、BC于點E、F,垂足為O

1如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長;

2如圖2,動點P、Q分別從A、C兩點同時出發(fā),沿△AFB和△CDE各邊勻速運動一周.即點P自A→F→B→A停止,點Q自C→D→E→C停止.在運動過程中,

①已知點P的速度為每秒5 cm,點Q的速度為每秒4 cm,運動時間為t秒,當(dāng)A、C、P、Q四點為頂點的四邊形是平行四邊形時,求t的值.

②若點P、Q的運動路程分別為、 單位:cm,≠0,已知A、C、P、Q四點為頂 點的四邊形是平行四邊形,求滿足的數(shù)量關(guān)系式.

【答案】1證明見解析;AF=5cm.2t=,a+b=12ab0

【解析】

試題分析:1先證明四邊形AFCE為平行四邊形,再根據(jù)對角線互相垂直平分的平行四邊形是菱形作出判定;根據(jù)勾股定理即可求得AF的長;

2分情況討論可知,當(dāng)P點在BF上、Q點在ED上時,才能構(gòu)成平行四邊形,根據(jù)平行四邊形的性質(zhì)列出方程求解即可;

分三種情況討論可知a與b滿足的數(shù)量關(guān)系式.

試題解析:1①∵四邊形ABCD是矩形,

ADBC,

∴∠CAD=ACB,AEF=CFE,

EF垂直平分AC,垂足為O,

OA=OC,

∴△AOE≌△COF,

OE=OF,

四邊形AFCE為平行四邊形,

EFAC,

四邊形AFCE為菱形,

設(shè)菱形的邊長AF=CF=xcm,則BF=8-xcm,

在RtABF中,AB=4cm,

由勾股定理得42+8-x2=x2,

解得x=5,

AF=5cm.

2顯然當(dāng)P點在AF上時,Q點在CD上,此時A、C、P、Q四點不可能構(gòu)成平行四邊形;

同理P點在AB上時,Q點在DE或CE上或P在BF,Q在CD時不構(gòu)成平行四邊形,也不能構(gòu)成平行四邊形.

因此只有當(dāng)P點在BF上、Q點在ED上時,才能構(gòu)成平行四邊形,

以A、C、P、Q四點為頂點的四邊形是平行四邊形時,PC=QA,

點P的速度為每秒5cm,點Q的速度為每秒4cm,運動時間為t秒,

PC=5t,QA=CD+AD-4t=12-4t,即QA=12-4t,

5t=12-4t,

解得t=

以A、C、P、Q四點為頂點的四邊形是平行四邊形時,t=秒.

由題意得,四邊形APCQ是平行四邊形時,點P、Q在互相平行的對應(yīng)邊上.

分三種情況:

i如圖1,當(dāng)P點在AF上、Q點在CE上時,AP=CQ,即a=12-b,得a+b=12;

ii如圖2,當(dāng)P點在BF上、Q點在DE上時,AQ=CP,即12-b=a,得a+b=12;

iii如圖3,當(dāng)P點在AB上、Q點在CD上時,AP=CQ,即12-a=b,得a+b=12.

綜上所述,a與b滿足的數(shù)量關(guān)系式是a+b=12ab0

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一水果經(jīng)銷商購進(jìn)了A,B兩種水果各10箱,分配給他的甲、乙兩個零售店(分別簡稱甲店、乙店)銷售,預(yù)計每箱水果的盈利情況如下表:

A種水果/

B種水果/

甲店

11

17

乙店

9

13

(1)如果甲、乙兩店各配貨10箱,其中A種水果兩店各5箱,B種水果兩店各5箱,請你計算出經(jīng)銷商能盈利多少元?

(2)在甲、乙兩店各配貨10箱(按整箱配送),且保證乙店盈利不小于100元的條件下,請你設(shè)計出使水果經(jīng)銷商盈利最大的配貨方案,并求出最大盈利為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算

1)(x+2y)(x24y2)(x2y

2999×1001

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若“”是新規(guī)定的某種運算符號,設(shè)ab=2a﹣3b,則(x+y)△(x﹣y)運算后的結(jié)果為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一長方形休閑廣場的四角都設(shè)計一塊半徑相同的四分之一圓的花壇,正中設(shè)計一個圓形噴水池,若四周圓形和中間圓形的半徑均為米,廣場長為米,寬為米.

(1)請列式表示廣場空地的面積;

(2)若休閑廣場的長為500米,寬為300米,圓形花壇的半徑為20米,求廣場空地的面積(計算結(jié)果保留).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點M表示的有理數(shù)是-1,點M在數(shù)軸上移動5個單位長度后得到點N,則點N表示的有理數(shù)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x的2倍與y的和的平方用代數(shù)式表示為( )
A.(2x+y)2
B.2x+y2
C.2x2+y2
D.2(x+y)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】當(dāng)n為整數(shù)時,(n+12n﹣12的值一定是4的倍數(shù)嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(.2016湖北隨州第8題)隨州市尚市“桃花節(jié)”觀賞人數(shù)逐年增加,據(jù)有關(guān)部門統(tǒng)計,2014年約為20萬人次,2016年約為28.8萬人次,設(shè)觀賞人數(shù)年均增長率為x,則下列方程中正確的是(

A.20(1+2x)=28.8 B.28.8(1+x)2=20

C.20(1+x)2=28.8 D.20+20(1+x)+20(1+x)2=28.8

查看答案和解析>>

同步練習(xí)冊答案