二次函數(shù)y=ax2+bx+6(a≠0)的圖象交y軸于C點(diǎn),交x軸于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)A、點(diǎn)B的橫坐標(biāo)是一元二次方程x2-4x-12=0的兩個根.
(1)求出點(diǎn)A、點(diǎn)B的坐標(biāo)及該二次函數(shù)表達(dá)式.
(2)如圖2,連接AC、BC,點(diǎn)Q是線段OB上一個動點(diǎn)(點(diǎn)Q不與點(diǎn)O、B重合),過點(diǎn)Q作QD∥AC交于BC點(diǎn)D,設(shè)Q點(diǎn)坐標(biāo)(m,0),當(dāng)△CDQ面積S最大時,求m的值.
(3)如圖3,線段MN是直線y=x上的動線段(點(diǎn)M在點(diǎn)N左側(cè)),且MN=數(shù)學(xué)公式,若M點(diǎn)的橫坐標(biāo)為n,過點(diǎn)M作x軸的垂線與x軸交于點(diǎn)P,過點(diǎn)N作x軸的垂線與拋物線交于點(diǎn)Q.以點(diǎn)P,M,Q,N為頂點(diǎn)的四邊形能否為平行四邊形?若能,請求出n的值;若不能,請說明理由.
作業(yè)寶

解:(1)∵一元二次方程x2-4x-12=0的兩個根,分別是x=2或6,點(diǎn)A、點(diǎn)B的橫坐標(biāo)是方程的兩個根,點(diǎn)A在點(diǎn)B的左側(cè),
∴A(-2,0)、B(6,0),將A、B兩點(diǎn)坐標(biāo)代入二次函數(shù)y=ax2+bx+6,得
,
解得,
故y=-x2+2x+6;

(2)依題意,得AB=8,QB=6-m,AQ=m+2,OC=6,則S△ABC=AB×OC=24,
∵由DQ∥AC,
∴△BDQ∽△BCA,
=(2=(2,
即S△BDQ=(m-6)2
又∵S△ACQ=AQ×OC=3m+6,
∴S=S△ABC-S△BDQ-S△ACQ=24-(m-6)2-(3m+6)=-m2+m+=-(m-2)2+6,
∴當(dāng)m=2時,S最大;

(3)∵M(jìn)N=,點(diǎn)A,B都在直線y=x上,MN在直線AB上,MN在線段 AB上,M的橫坐標(biāo)為n,縱坐標(biāo)也為n,
如圖3,過點(diǎn)M作x軸的平行線,過點(diǎn)N作y軸的平行線,它們相交于點(diǎn)H.
∴△MHN是等腰直角三角形.
∴MH=NH=1.
∴點(diǎn)N的坐標(biāo)為(n+1,n+1),
①如圖4,當(dāng)n>0時,PM=n,
NQ=n+1-[-(n+1)2+2(n+1)+6],
當(dāng)四邊形PMQN為平行四邊形時,PM=NQ.
則n=n+1-[-(n+1)2+2(n+1)+6],
解得n=1+-1;
②如圖5,當(dāng)n<0時,PM=-m,
NQ=n+1-[-(n+1)2+2(n+1)+6],
當(dāng)四邊形PMQN為平行四邊形時,PM=NQ.
則-n=n+1-[-(n+1)2+2(n+1)+6],
解得n=1-或-1-,
③∵直線AB過O,即直線經(jīng)過第一、三象限,
∴點(diǎn)M在第3象限點(diǎn)N在第2象限不存在;
綜上所述以點(diǎn)P,M,Q,N為頂點(diǎn)的四邊形能為平行四邊形,n的值是n=1±,或n=-1±
分析:(1)解一元二次方程x2-4x-12=0可求A、B兩點(diǎn)坐標(biāo);將A、B兩點(diǎn)坐標(biāo)代入二次函數(shù)y=ax2+bx+6,可求二次函數(shù)解析式;
(2)由DQ∥AC得△BDQ∽△BCA,利用相似比表示△BDQ的面積,利用三角形面積公式表示△ACQ的面積,根據(jù)S△CDQ=S△ABC-S△BDQ-S△ACQ,運(yùn)用二次函數(shù)的性質(zhì)求面積最大時,m的值;
(3)以點(diǎn)P,M,Q,N為頂點(diǎn)的四邊形能為平行四邊形,因?yàn)镸,N的位置不確定,所以要分三種情況討論,求出滿足題意的n值即可.
點(diǎn)評:本題考查了二次函數(shù)性質(zhì)的綜合運(yùn)用、用待定系數(shù)法求出二次函數(shù)的解析式和平行四邊形的判定和性質(zhì)以及相似三角形的性質(zhì)和判定既數(shù)學(xué)分類討論思想的運(yùn)用,題目的綜合性強(qiáng),難度大,能夠很好的鍛煉學(xué)生的解題能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(-3,0)、B兩點(diǎn),與y軸交于精英家教網(wǎng)點(diǎn)C(0,
3
)
,當(dāng)x=-4和x=2時,二次函數(shù)y=ax2+bx+c(a≠0)的函數(shù)值y相等,連接AC、BC.
(1)求實(shí)數(shù)a,b,c的值;
(2)若點(diǎn)M、N同時從B點(diǎn)出發(fā),均以每秒1個單位長度的速度分別沿BA、BC邊運(yùn)動,其中一個點(diǎn)到達(dá)終點(diǎn)時,另一點(diǎn)也隨之停止運(yùn)動,當(dāng)運(yùn)動時間為t秒時,連接MN,將△BMN沿MN翻折,B點(diǎn)恰好落在AC邊上的P處,求t的值及點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,拋物線的對稱軸上是否存在點(diǎn)Q,使得以B,N,Q為頂點(diǎn)的三角形與△ABC相似?若存在,請求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

二次函數(shù)y=ax2+bx+c,當(dāng)x=
12
時,有最大值25,而方程ax2+bx+c=0的兩根α、β,滿足α33=19,求a、b、c.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果二次函數(shù)y=ax2+bx+c的圖象的頂點(diǎn)坐標(biāo)是(2,4),且直線y=x+4依次與y軸和拋物線相交于P、Q、R三點(diǎn),PQ:QR=1:3,求這個二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說法:①abc>0;②2a+b=0;③a+b+c>0;④當(dāng)-1<x<3時,y>0.其中正確結(jié)論的序號是
②③④
②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•孝感)二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的對稱軸是直線x=1,其圖象的一部分如圖所示.對于下列說法:
①abc<0;②a-b+c<0;③3a+c<0;④當(dāng)-1<x<3時,y>0.
其中正確的是
①②③
①②③
(把正確的序號都填上).

查看答案和解析>>

同步練習(xí)冊答案