關于x的方程x2+2(k+1)x+k-2=0
(1)試說明:不論k取何值時,方程總有實數(shù)根;
(2)若方程有一根為x=1,求k的值并求出方程的另一根.
分析:(1)將根的判別式進行配方,得到非負數(shù)即可進行判斷;
(2)將x=1代入x2+2(k+1)x+k-2=0得到k的值,然后根據(jù)根與系數(shù)的關系求出另一根.
解答:(1)證明:∵△=[2(k+1)]2-4(k-2)
=4k2+8k+2-4k+8
=4k2+4k+10
=4(k2+k)+10
=4(k2+k+
1
4
-
1
4
)+10
=4(k+
1
2
2-1+10
=4(k+
1
2
2+9>0,
∴不論k取何值時,方程總有實數(shù)根;

(2)解:將x=1代入x2+2(k+1)x+k-2=0得,
1+2(k+1)+k-2=0,
解得,k=-
1
3
,
則k-2=-
1
3
-2=-
7
3
;
∴x•1=-
7
3
,
解得k=-
7
3
,
k=-
1
3
,另一個根為x=-
7
3
點評:本題考查了根與系數(shù)的關系及根的判別式,一定要熟悉配方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如果關于x的方程x2+x-
1
4
k=0
沒有實數(shù)根,那么k的取值范圍是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

用配方法解關于x的方程x2+px=q時,應在方程兩邊同時加上( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關于x的方程x2-2x+k=0的一根是2,則k=
0
0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

通過觀察,發(fā)現(xiàn)方程不難求得方程:x+
2
x
=3+
2
3
的解是x1=3,x2=
2
3
;x+
2
x
=4+
2
4
的解是x1=4,x2=
2
4
;x+
2
x
=5+
2
5
的解是x1=5,x2=
2
5
;…
(1)觀察上述方程及其解,可猜想關于x的方程x+
2
x
=a+
2
a
的解是
x1=a,x2=
2
a
x1=a,x2=
2
a
;
(2)試驗證:當x1=a-1,x2=
2
a-1
都是方程x+
2
x
=a+
2
a-1
-1
的解;
(3)利用你猜想的結論,解關于x的方程
x2-x+2
x-1
=a+
2
a-1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關于x的方程
x2+4
x(x-2)
-
x
x-2
=
a
x
無解,求a的值?

查看答案和解析>>

同步練習冊答案