如圖,在△ABD中,C是BD上的一點,且AC⊥BD,AC=BC=CD.
(1)求證:△ABD是等腰三角形;
(2)求∠BAD的度數(shù).
(1)∵AC⊥BD,AC=BC=CD,
∴∠ACB=∠ACD=90°.
∴△ACB≌△ACD.
∴AB=AD.
∴△ABD是等腰三角形.

(2)∵AC⊥BD,AC=BC=CD,
∴△ACB、△ACD都是等腰直角三角形.
∴∠B=∠D=45°.
∴∠BAD=90°.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,AB=AC,∠BAD=30°,∠CAD=50°,AE=AD,
(1)求∠EDC的度數(shù).
(2)若把條件“∠CAD=50°”去掉,你是否還能求出∠EDC的度數(shù)?若能,請寫出求解過程;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(1)如圖1,在△ABC中,∠ABC的平分線BF交AC于F,過點F作DFBC,求證:BD=DF.

(2)如圖2,在△ABC中,∠ABC的平分線BF與∠ACB的平分線CF相交于F,過點F作DEBC,交直線AB于點D,交直線AC于點E.那么BD,CE,DE之間存在什么關系?并證明這種關系.
(3)如圖3,在△ABC中,∠ABC的平分線BF與∠ACB的外角平分線CF相交于F,過點F作DEBC,交直線AB于點D,交直線AC于點E.那么BD,CE,DE之間存在什么關系?請寫出你的猜想.(不需證明)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知等腰△ABC中,頂角∠A=36°,BD為∠ABC的平分線,則
AD
AC
的值等于______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在平面直角坐標系中,點A在第一象限,點P在x軸上,若以P,O,A為頂點的三角形是等腰三角形,則滿足條件的點P共有( 。
A.2個B.3個C.4個D.5個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知△ABC中,點D、E在BC上,AB=AC,AD=AE.請說明BD=CE的理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,△ABC中,BD、CE分別是AC、AB上的高,BD與CE交于點O.BE=CD
(1)問△ABC為等腰三角形嗎?為什么?
(2)問點O在∠A的平分線上嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,∠B=90°,M是AC上任意一點(M與A不重合)MD⊥BC,交∠ABC的平分線于點D,求證:MD=MA.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在△ABC中,AB=AC,點D在BC上,DE⊥AB,DF⊥AC,垂足分別為E、F,且DE=DF.求證:D是BC的中點.

查看答案和解析>>

同步練習冊答案