【題目】如圖,ABCD的對(duì)角線AC,BD相交于點(diǎn)O,OAB是等邊三角形.

1)求證:ABCD為矩形;

2)若AB4,求ABCD的面積.

【答案】1)見(jiàn)解析;(2.

【解析】

1)根據(jù)題意可求OAOBDO,∠AOB60°,可得∠BAD90°,即結(jié)論可得;

2)根據(jù)勾股定理可求AD的長(zhǎng),即可求ABCD的面積.

解(1)∵△AOB為等邊三角形∴∠BAO60°=∠AOB,OAOB

∵四邊形ABCD是平行四邊形

OBOD,

OAOD

∴∠OAD30°,

∴∠BAD30°+60°90°

∴平行四邊形ABCD為矩形;

2)在RtABC中,∠ACB30°,

AB4BCAB4

ABCD的面積=4×416

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的函數(shù)圖象與x軸、y軸分別交于點(diǎn)A、B,以線段AB為直角邊在第一象限內(nèi)作RtABC,且使∠ABC30°

1)求ABC的面積;

2)如果在第二象限內(nèi)有一點(diǎn)Pm),試用含m的代數(shù)式表示APB的面積,并求當(dāng)APBABC面積相等時(shí)m的值;

3)是否存在使QAB是等腰三角形并且在坐標(biāo)軸上的點(diǎn)Q?若存在,請(qǐng)寫出點(diǎn)Q所有可能的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖,在RtABC中,∠ACB90°,D、E分別是AB、AC的中點(diǎn),FBC延長(zhǎng)線上的一點(diǎn),且EFDC.(1)求證:四邊形CDEF是平行四邊形;(2)若EF2cm,求AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】實(shí)踐操作:在矩形ABCD中,AB4,AD3,現(xiàn)將紙片折疊,點(diǎn)D的對(duì)應(yīng)點(diǎn)記為點(diǎn)P,折痕為EF(點(diǎn)E、F是折痕與矩形的邊的交點(diǎn)),再將紙片還原.

初步思考:

1)若點(diǎn)P落在矩形ABCD的邊AB上(如圖①)

①當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),∠DEF   °;當(dāng)點(diǎn)E與點(diǎn)A重合時(shí),∠DEF   °;

②當(dāng)點(diǎn)EAB上,點(diǎn)FDC上時(shí)(如圖②),

求證:四邊形DEPF為菱形,并直接寫出當(dāng)AP3.5時(shí)的菱形EPFD的邊長(zhǎng).

深入探究

2)若點(diǎn)P落在矩形ABCD的內(nèi)部(如圖③),且點(diǎn)EF分別在AD、DC邊上,請(qǐng)直接寫出AP的最小值   

拓展延伸

3)若點(diǎn)F與點(diǎn)C重合,點(diǎn)EAD上,線段BA與線段FP交于點(diǎn)M(如圖④).在各種不同的折疊位置中,是否存在某一情況,使得線段AM與線段DE的長(zhǎng)度相等?若存在,請(qǐng)直接寫出線段AE的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于點(diǎn)Pa,b),點(diǎn)Qc,d),如果abcd,那么點(diǎn)P與點(diǎn)Q就叫作等差點(diǎn).例如:點(diǎn)P42),點(diǎn)Q(﹣1,﹣3),因421﹣(﹣3)=2,則點(diǎn)P與點(diǎn)Q就是等差點(diǎn).如圖在矩形GHMN中,點(diǎn)H2,3),點(diǎn)N(﹣2,﹣3),MNy軸,HMx軸,點(diǎn)P是直線yx+b上的任意一點(diǎn)(點(diǎn)P不在矩形的邊上),若矩形GHMN的邊上存在兩個(gè)點(diǎn)與點(diǎn)P是等差點(diǎn),則b的取值范圍為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A在x軸的正半軸上,以O(shè)A為直徑作⊙P,C是⊙P上一點(diǎn),過(guò)點(diǎn)C的直線y= x+ 與x軸,y軸分別相交于點(diǎn)D,點(diǎn)E,連接AC并延長(zhǎng)與y軸相交于點(diǎn)B,點(diǎn)B的坐標(biāo)為(0, ).

(1)求證:OE=CE;
(2)請(qǐng)判斷直線CD與⊙P位置關(guān)系,證明你的結(jié)論,并求出⊙P半徑的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,在四邊形ABCD中,點(diǎn)E、點(diǎn)F分別為AD、BC的中點(diǎn),連接EF

1)如圖1ABCD,連接AF并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)G,則AB、CD、EF之間的數(shù)量關(guān)系為   ;

2)如圖2,∠B90°,∠C150°,求ABCD、EF之間的數(shù)量關(guān)系?

3)如圖3,∠ABC=∠BCD45°,連接AC、BD交于點(diǎn)O,連接OE,若AB,CD2,BC6,則OE   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)銷售一批名牌襯衣,平均每天可售出20件,每件襯衣盈利40元.為了擴(kuò)大銷售,增加盈利,盡快減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衣降價(jià)1元,商場(chǎng)平均每天可多售出2件.
(1)若商場(chǎng)平均每天盈利1200元,每件襯衣應(yīng)降價(jià)多少元?
(2)若要使商場(chǎng)平均每天的盈利最多,請(qǐng)你為商場(chǎng)設(shè)計(jì)降價(jià)方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖(1)所示,已知中,試確定

2)如圖(2)所示,已知中,試確定

3)如圖(3)所示,已知中,試確定

查看答案和解析>>

同步練習(xí)冊(cè)答案