如圖,⊙O經(jīng)過(guò)菱形ABCD的三個(gè)頂點(diǎn)A、C、D,且與AB相切于點(diǎn)A.
(1)求證:BC為⊙O的切線;
(2)求∠B的度數(shù).
(1)證明見解析;(2)∠ABC =60°.
【解析】
試題分析:(1)連結(jié)OA、OB、OC、BD,根據(jù)切線的性質(zhì)得OA⊥AB,即∠OAB=90°,再根據(jù)菱形的性質(zhì)得BA=BC,然后根據(jù)“SSS”可判斷△ABO≌△CBO,則∠BCO=∠BAO=90°,于是可根據(jù)切線的判定方法即可得到結(jié)論;
(2)由△ABO≌△CBO得∠AOB=∠COB,則∠AOB=∠COB,由于菱形的對(duì)角線平分對(duì)角,所以點(diǎn)O在BD上,利用三角形外角性質(zhì)有∠BOC=∠ODC+∠OCD,則∠BOC=2∠ODC,由于CB=CD,∠OBC=∠ODC,所以∠BOC=2∠OBC,根據(jù)∠BOC+∠OBC=90°可計(jì)算出∠OBC=30°,然后利用∠ABC=2∠OBC計(jì)算.
試題解析:(1)連結(jié)OA、OB、OC、BD,如圖,
∵AB與⊙O切于A點(diǎn),
∴OA⊥AB,即∠OAB=90°,
∵四邊形ABCD為菱形,
∴BA=BC,
在△ABO和△CBO中
,
∴△ABO≌△CBO(SSS),
∴∠BCO=∠BAO=90°,
∴OC⊥BC,
∴BC為⊙O的切線;
(2)∵△ABO≌△CBO,
∴∠AOB=∠COB,
∵四邊形ABCD為菱形,
∴BD平分∠ABC,DA=DC,
∴點(diǎn)O在BD上,
∵∠BOC=∠ODC+∠OCD,OD=OC,
∴∠ODC=∠OCD,
∴∠BOC=2∠ODC,
同理:∠BOC=2∠OBC,
∵∠BOC+∠OBC=90°,
∴∠OBC=30°,
∴∠ABC=2∠OBC=60°.
考點(diǎn):1.切線的判定與性質(zhì),2.菱形的性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
2 |
3 |
5 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
k |
x |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
k-1 | x |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com