如圖,四邊形OABC是菱形,點C在x軸上,AB交y軸于點H,AC交y軸于點M.點P從點A出發(fā),以2單位長/秒的速度沿折線A-B-C運動,到達(dá)點C終止.已知點A(-3,4),設(shè)點P的運動時間為t(秒),△PMB的面積為S(平方單位).
(1)求點C和點B的坐標(biāo);
(2)求點M的坐標(biāo);
(3)求S與t的函數(shù)關(guān)系式;
(4)求S的最大值.

【答案】分析:(1)根據(jù)A的坐標(biāo)求出AH、OH,根據(jù)勾股定理求出AO,再利用菱形的性質(zhì)即可求出點C和點B的坐標(biāo);
(2)由(1)可知點C和點B的坐標(biāo),設(shè)直線AC的解析式是y=kx+b,把A(-3,4),C(5,0)代入得到方程組,求出即可;
(3)過M作MN⊥BC于N,根據(jù)角平分線性質(zhì)求出MN,P在AB上,根據(jù)三角形面積公式求出即可;P在BC上,根據(jù)三角形面積公式求出即可;
(4)求出P在AB的最大值和P在BC上的最大值比較即可得到答案.
解答:解:(1)∵A(-3,4),
∴AH=3,OH=4,
由勾股定理得:AO==5,
∵菱形OABC,
∴OA=OC=BC=AB=5,
∴BH=AB-AH=5-3=2,
∴B(2,4),C(5,0).

(2)設(shè)直線AC的解析式是y=kx+b,
把A(-3,4),C(5,0)代入得:
,
解得:
∴直線AC的解析式為 y=-x+,
當(dāng)x=0時,y=2.5
∴M(0,2.5).

(3)過M作MN⊥BC于N,
∵菱形OABC,
∴∠BAC=∠OCA,
∵M(jìn)O⊥CO,MN⊥BC,
∴OM=MN,
當(dāng)0≤t<2.5時,P在AB上,MH=4-2.5=,
S=×BP×MH=×(5-2t)×=-t+,
∴S=-t+
當(dāng)2.5<t≤5時,P在BC上,S=×PB×MN=×(2t-5)×=t-,
∴S=t-
答:S與t的函數(shù)關(guān)系式是 S=-t+(0≤t<2.5)或 S=t-(2.5<t≤5).

(4)當(dāng)P在AB上時,高M(jìn)H一定,只有BP取最大值即可,即P與A重合,S最大是×5×=,
同理在BC上時,P與C重合時,S最大是×5×=,
∴S的最大值是,
答:S的最大值是
點評:本題主要考查對勾股定理,三角形的面積,菱形的性質(zhì),角平分線性質(zhì),解二元一次方程組,用待定系數(shù)法求一次函數(shù)的解析式等知識點的理解和掌握,綜合運用這些性質(zhì)進(jìn)行計算是解此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形OABC為直角梯形,BC∥OA,∠O=90°,OA=4,BC=3,OC=4.點M從O出發(fā)以每秒2個單位長度的速度向A運動;點N從B同時出發(fā),以每秒1個單位長度的速度向C運動.其中一個動點到達(dá)終點時,另一個動點也隨之停止運精英家教網(wǎng)動.過點N作NP⊥OA于點P,連接AC交NP于Q,連接MQ. 
(1)點
 
(填M或N)能到達(dá)終點;
(2)求△AQM的面積S與運動時間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形OABC是一張放在平面直角坐標(biāo)系中的正方形紙片.點O與坐標(biāo)原點重合,點A在x軸上,點C在y軸上,OC=4,點E為BC的中點,點N的坐標(biāo)為(3,0),過點N且平行于y軸的直線MN與EB交于點M.現(xiàn)將紙片折疊,使頂點C落精英家教網(wǎng)在MN上,并與MN上的點G重合,折痕為EF,點F為折痕與y軸的交點.
(1)求點G的坐標(biāo);
(2)求折痕EF所在直線的解析式;
(3)設(shè)點P為直線EF上的點,是否存在這樣的點P,使得以P,F(xiàn),G為頂點的三角形為等腰三角形?若存在,請直接寫出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形OABC為正方形,點A在x軸上,點C在y軸上,點B(8,8),點P在邊OC上,點M在邊AB上.把四邊形OAMP沿PM對折,PM為折痕,使點O落在BC邊上的點Q處.動點E從點O出發(fā),沿OA邊以每秒1個單位長度的速度向終點A運動,運動時間為t,同時動點F從點O出發(fā),沿OC邊以相同的速度向終點C運動,當(dāng)點E到達(dá)點A時,E、F同時停止運動.
(1)若點Q為線段BC邊中點,直接寫出點P、點M的坐標(biāo);
(2)在(1)的條件下,設(shè)△OEF與四邊形OAMP重疊面積為S,求S與t的函數(shù)關(guān)系式;
(3)在(1)的條件下,在正方形OABC邊上,是否存在點H,使△PMH為等腰三角形,若存在,求出點H的坐標(biāo),若不存在,請說明理由;
(4)若點Q為線段BC上任一點(不與點B、C重合),△BNQ的周長是否發(fā)生變化,若不發(fā)生變化,求出其值,若發(fā)生變化,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•呼倫貝爾)如圖,四邊形OABC是邊長為2的正方形,反比例函數(shù)y=
k
x
的圖象過點B,則k的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

附加題:如圖,四邊形OABC為直角梯形,已知AB∥OC,BC⊥OC,A點坐標(biāo)為(3,4),AB=6,若動點P沿著O→A→B→C的方向運動(不包括O點和C點),P點運動路程為S,下列語句中正確的個數(shù)精英家教網(wǎng)是(  )
(1)直線OA的函數(shù)解析式為y=
4
3
x
;
(2)梯形OABC的周長為24;
(3)若點P在線段AB上時,P點的坐標(biāo)為(S-5,4)
(4)若點P在線段BC上時,P點的坐標(biāo)為(9,15-S)
A、1個B、2個C、3個D、4個

查看答案和解析>>

同步練習(xí)冊答案