(2011•犍為縣模擬)如圖,O是坐標(biāo)原點(diǎn),直線OA與雙曲線y=
k
x
(k≠0)在第一象限內(nèi)交于點(diǎn)A,過點(diǎn)A作AB⊥x軸,垂足為B,若OB=4,tan∠AOB=
1
2

(1)求雙曲線的解析式;
(2)直線AC與y軸交于點(diǎn)C(0,1),與x軸交于點(diǎn)D,求AD的長.
分析:(1)根據(jù)正切的定義得到
AB
OB
=
1
2
,而OB=4,得到AB=2,則A點(diǎn)坐標(biāo)為(4,2),然后把A(4,2)代入y=
k
x
即可求出k,從而確定雙曲線的解析式;
(2)先利用待定系數(shù)法求出直線AC的解析式,然后確定D點(diǎn)坐標(biāo),最后根據(jù)勾股定理計(jì)算出AD的長.
解答:解:(1)∵AB⊥x軸,OB=4,tan∠AOB=
1
2
,
AB
OB
=
1
2

∴AB=2,
∴A點(diǎn)坐標(biāo)為(4,2),
把A(4,2)代入y=
k
x
得,k=4×2=8,
∴雙曲線的解析式為y=
8
x
;

(2)設(shè)直線AC的解析式為y=kx+b,
把A(4,2)、C(0,1)代入得,4k+b=2,b=1,解得k=
1
4
,b=1,
∴直線AC的解析式為y=
1
4
x+1,
令y=0,則
1
4
x+1=0,解得x=-4,
∴D點(diǎn)坐標(biāo)為(-4,0),
在Rt△ABD中,AB=2,BD=8,
∴AD=
AB2+BD2
=
22+82
=2
17
點(diǎn)評(píng):本題考查了反比例函數(shù)綜合題:先利用幾何條件確定反比例函數(shù)圖象上點(diǎn)的坐標(biāo),再利用待定系數(shù)法確定反比例函數(shù)的解析式,然后利用反比例函數(shù)的性質(zhì)解決問題.也考查了勾股定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2011•犍為縣模擬)閱讀下列內(nèi)容后,解答下列各題:幾個(gè)不等于0的數(shù)相乘,積的符號(hào)由負(fù)因數(shù)的個(gè)數(shù)決定.
例如:考查代數(shù)式(x-1)(x-2)的值與0的大。
當(dāng)x<1時(shí),x-1<0,x-2<0,∴(x-1)(x-2)>0;當(dāng)1<x<2時(shí),x-1>0,x-2<0,∴(x-1)(x-2)<0;當(dāng)x>2時(shí),x-1>0,x-2>0,∴(x-1)(x-2)>0;綜上:當(dāng)1<x<2時(shí),(x-1)(x-2)<0;當(dāng)x<1或x>2時(shí),(x-1)(x-2)>0
(1)填寫下表:(用“+”或“-”填入空格處)
x<-2 -2<x<-1 -1<x<3
x+2 x1=3,x2=-1 C(-1,0) P(xp,yp
x+1 - |yP|=5
+
+
x-3 x
-
-
yP=-5
(2)由上表可知,當(dāng)x滿足
x<-2或-1<x<3
x<-2或-1<x<3
時(shí),(x+2)(x+1)(x-3)<0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•犍為縣模擬)計(jì)算:(
2011
+1)0+(-
1
3
)-1-|
2
-2|-
4
•sin45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•犍為縣模擬)某縣道路改造工程,由甲、乙兩工程隊(duì)合作12天可完成.甲工程隊(duì)單獨(dú)施工比乙工程隊(duì)單獨(dú)施工多用10天完成此項(xiàng)工程.
(1)求甲、乙兩工程隊(duì)單獨(dú)完成此項(xiàng)工程各需要多少天?
(2)如果甲工程隊(duì)施工每天需付施工費(fèi)3萬元,乙工程隊(duì)施工每天需付施工費(fèi)5萬元,甲工程隊(duì)至少要單獨(dú)施工多少天后,再由甲、乙兩工程隊(duì)合作施工完成剩下的工程,才能使施工費(fèi)不超過93萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•犍為縣模擬)甲題:已知關(guān)于x的一元二次方程x2=2(1-m)x-m2的兩實(shí)數(shù)根為x1,x2
(1)求m的取值范圍;
(2)設(shè)y=x1+x2,當(dāng)y取得最小值時(shí),求相應(yīng)m的值,并求出最小值.
乙題:如圖,在?ABCD中,BE⊥AD于點(diǎn)E,BF⊥CD于點(diǎn)F,AC與BE、BF分別交于點(diǎn)G,H.
(1)求證:△BAE∽△BCF.
(2)若BG=BH,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•犍為縣模擬)如圖,在平面直角坐標(biāo)系中,已知直線y=-x+3交x軸于點(diǎn)A,交y軸于點(diǎn)B,拋物線y=mx2+nx+3經(jīng)過點(diǎn)A和點(diǎn)(2,3),與x軸的另一交點(diǎn)為C.
(1)求此二次函數(shù)的表達(dá)式;
(2)若點(diǎn)P是x軸下方的拋物線上一點(diǎn),且△ACP的面積為10,求P點(diǎn)坐標(biāo);
(3)若點(diǎn)D為拋物線上AB段上的一動(dòng)點(diǎn)(點(diǎn)D不與A,B重合),過點(diǎn)D作DE⊥x軸交x軸于F,交線段AB于點(diǎn)E.是否存在點(diǎn)D,使得四邊形BDEO為平行四邊形?若存在,請(qǐng)求出滿足條件的點(diǎn)D的坐標(biāo);若不存在,請(qǐng)通過計(jì)算說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案