【題目】在海洋上有一近似于四邊形的島嶼,其平面如圖甲,小明據(jù)此構(gòu)造處該島的一個(gè)數(shù)學(xué)模型(如圖乙四邊形ABCD),AC是四邊形島嶼上的一條小溪流,其中∠B=90°,AB=BC=5千米,CD=干米,AD=4干米.
(1)求小溪流AC的長.
(2)求四邊形ABCD的面積.(結(jié)果保留根號)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AC、BD相交于O,AE平分∠BAD,交BC于E,若∠CAE=15°,求∠BOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),AB=CD,AD=BC,O為AC中點(diǎn),過O點(diǎn)的直線分別與AD、BC相交于點(diǎn)M、N,那么∠1與∠2有什么關(guān)系?請說明理由;
若過O點(diǎn)的直線旋轉(zhuǎn)至圖(2)、(3)的情況,其余條件不變,那么圖(1)中的∠1與∠2的關(guān)系成立嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P為等邊△ABC內(nèi)一點(diǎn),且PA=2 ,PB=1,,PC=,求∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AB⊥BC,點(diǎn)E在AB上,∠DEC=90°.
(1)求證:△ADE∽△BEC.
(2)若AD=1,BC=3,AE=2,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以△ABC的三邊為邊在BC的同一側(cè)作等邊△ABP,等邊△ACQ,等邊△BCR.
(1)四邊形QRPA是平行四邊形嗎?若是,請證明;若不是,請說明理由.
(2)當(dāng)△ABC滿足什么條件時(shí),四邊形QRPA是矩形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(3分)如圖,小華站在河岸上的G點(diǎn),看見河里有一小船沿垂直于岸邊的方向劃過來.此時(shí),測得小船C的俯角是∠FDC=30°,若小華的眼睛與地面的距離是1.6米,BG=0.7米,BG平行于AC所在的直線,迎水坡i=4:3,坡長AB=8米,點(diǎn)A、B、C、D、F、G在同一平面內(nèi),則此時(shí)小船C到岸邊的距離CA的長為 米.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB是直徑,CD是弦,AB⊥CD,垂足為E,連結(jié)CO,AD,∠BAD=20°,則下列說法中正確的是( )
A. ∠BOC=2∠BAD B. CE=EO C. ∠OCE=40° D. AD=2OB
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,矩形中,,,點(diǎn)是邊上的一動(dòng)點(diǎn)(點(diǎn)與、點(diǎn)不重合),四邊形沿折疊得邊形,延長交于點(diǎn).
圖① 圖②
(1)求證:;
(2)如圖②,若點(diǎn)恰好在的延長線上時(shí),試求出的長度;
(3)當(dāng)時(shí),求證:是等腰三角形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com