如圖所示,P是∠BAC平分線上一點(diǎn),PM⊥AB于M點(diǎn),PN⊥AC于N點(diǎn),則下列結(jié)論正確的個(gè)數(shù)有

[  ]

(1)PM=PN;(2)AM-AN=0;(3)△APM與△APN面積相等;(4)∠PAN+∠APM=90°.

A.1
B.2
C.3
D.4
答案:D
解析:

由角平分線性質(zhì)可知(1)對(duì),由△PAN≌△PAM可得AM=AN,(2)對(duì),三角形全等,面積也相等,所以(3)對(duì),由直角三角形兩銳角互余,(4)也對(duì),故選D


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、如圖所示,△ABC是等邊三角形,延長(zhǎng)BC至E,延長(zhǎng)BA至F,使AF=BE,連接CF、EF,過(guò)點(diǎn)F作直線FD⊥CE于D,試發(fā)現(xiàn)∠FCE與∠FEC的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,BC是⊙O直徑,AD⊥BC,垂足為D,
BA
=
AF
,BF與AD交于E,求證:AE=BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

13、如圖所示,AB是圓O的直徑,C是BA延長(zhǎng)線上一點(diǎn),CD切圓O于點(diǎn)D,CD=4,CA=2,則圓O的半徑為
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•恩施州)如圖所示,AB是⊙O的直徑,AE是弦,C是劣弧AE的中點(diǎn),過(guò)C作CD⊥AB于點(diǎn)D,CD交AE于點(diǎn)F,過(guò)C作CG∥AE交BA的延長(zhǎng)線于點(diǎn)G.
(1)求證:CG是⊙O的切線.
(2)求證:AF=CF.
(3)若∠EAB=30°,CF=2,求GA的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

有這樣一道題:
如圖所示,已知BA∥CD,BE平分∠ABC,CE平分∠BCD,試判斷∠1與∠2的度數(shù)有怎樣的關(guān)系,并說(shuō)明理由.小麗的判斷是∠1與∠2互余,這是正確的,但是她寫(xiě)的說(shuō)明不完整,請(qǐng)你給予補(bǔ)充.
因?yàn)锽E是∠ABC的平分線,所以∠2=
1
2
∠ABC
∠ABC
.又因?yàn)镃E是∠BCD的平分線,所以∠1=
1
2
∠BCD
∠BCD
,于是∠1+∠2=
1
2
∠ABC
∠ABC
+
∠BCD
∠BCD
).
而AB∥CD,根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ),得
∠ABC
∠ABC
+
∠BCD
∠BCD
=
180°
180°
,所以∠1+∠2=90°,即∠1與∠2互余.

查看答案和解析>>

同步練習(xí)冊(cè)答案