【題目】如圖,拋物線(a≠0)交x軸于A、B兩點(diǎn),A點(diǎn)坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,4),以O(shè)C、OA為邊作矩形OADC交拋物線于點(diǎn)G.
(1)求拋物線的解析式;
(2)拋物線的對(duì)稱軸l在邊OA(不包括O、A兩點(diǎn))上平行移動(dòng),分別交x軸于點(diǎn)E,交CD于點(diǎn)F,交AC于點(diǎn)M,交拋物線于點(diǎn)P,若點(diǎn)M的橫坐標(biāo)為m,請(qǐng)用含m的代數(shù)式表示PM的長(zhǎng);
(3)在(2)的條件下,連結(jié)PC,則在CD上方的拋物線部分是否存在這樣的點(diǎn)P,使得以P、C、F為頂點(diǎn)的三角形和△AEM相似?若存在,求出此時(shí)m的值,并直接判斷△PCM的形狀;若不存在,請(qǐng)說明理由。
【答案】解:(1)∵拋物線(a≠0)經(jīng)過點(diǎn)A(3,0),點(diǎn)C(0,4),
∴,解得。
∴拋物線的解析式為。
(2)設(shè)直線AC的解析式為y=kx+b,
∵A(3,0),點(diǎn)C(0,4),
∴,解得。
∴直線AC的解析式為。
∵點(diǎn)M的橫坐標(biāo)為m,點(diǎn)M在AC上,
∴M點(diǎn)的坐標(biāo)為(m,)。
研三理-孟奕含(713000529);∵點(diǎn)P的橫坐標(biāo)為m,點(diǎn)P在拋物線上,
∴點(diǎn)P的坐標(biāo)為(m,)。
∴PM=PE-ME=()-()=。
∴PM=(0<m<3)。
(3)在(2)的條件下,連接PC,在CD上方的拋物線部分存在這樣的點(diǎn)P,使得以P、C、F為頂點(diǎn)的三角形和△AEM相似。理由如下:
由題意,可得AE=3﹣m,EM=,CF=m,PF==,
若以P、C、F為頂點(diǎn)的三角形和△AEM相似,分兩種情況:
①若△PFC∽△AEM,則PF:AE=FC:EM,即():(3-m)=m:(),
∵m≠0且m≠3,∴m=。
∵△PFC∽△AEM,∴∠PCF=∠AME。
∵∠AME=∠CMF,∴∠PCF=∠CMF。
在直角△CMF中,∵∠CMF+∠MCF=90°,∴∠PCF+∠MCF=90°,即∠PCM=90°。
∴△PCM為直角三角形。
②若△CFP∽△AEM,則CF:AE=PF:EM,即m:(3-m)=():(),
∵m≠0且m≠3,∴m=1。
∵△CFP∽△AEM,∴∠CPF=∠AME。
∵∠AME=∠CMF,∴∠CPF=∠CMF。∴CP=CM。
∴△PCM為等腰三角形。
綜上所述,存在這樣的點(diǎn)P使△PFC與△AEM相似.此時(shí)m的值為或1,△PCM為直角三角形或等腰三角形。
【解析】(1)將A(3,0),C(0,4)代入,運(yùn)用待定系數(shù)法即可求出拋物線的解析式。
(2)先根據(jù)A、C的坐標(biāo),用待定系數(shù)法求出直線AC的解析式,從而根據(jù)拋物線和直線AC的解析式分別表示出點(diǎn)P、點(diǎn)M的坐標(biāo),即可得到PM的長(zhǎng)。
(3)由于∠PFC和∠AEM都是直角,F(xiàn)和E對(duì)應(yīng),則若以P、C、F為頂點(diǎn)的三角形和△AEM相似時(shí),分兩種情況進(jìn)行討論:①△PFC∽△AEM,②△CFP∽△AEM;可分別用含m的代數(shù)式表示出AE、EM、CF、PF的長(zhǎng),根據(jù)相似三角形對(duì)應(yīng)邊的比相等列出比例式,求出m的值,再根據(jù)相似三角形的性質(zhì),直角三角形、等腰三角形的判定判斷出△PCM的形狀。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校開展拓展課程展示活動(dòng),需要制作A,B兩種型號(hào)的宣傳廣告共20個(gè),已知A,B兩種廣告牌的單價(jià)分別為40元,70元
(1)若根據(jù)活動(dòng)需要,A種廣告牌數(shù)量與B種廣告牌數(shù)量之比為3:2,需要多少費(fèi)用?
(2)若需制作A,B兩種型號(hào)的宣傳廣告牌,其中B種型號(hào)不少于5個(gè),制作總費(fèi)用不超過1000元,則有幾種制作方案?每一種制作方案的費(fèi)用分別是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題提出)|a﹣1|+|a﹣2|+|a﹣3|+…+|a﹣2019|最小值是多少?
(閱讀理解)
為了解決這個(gè)問題,我們先從最簡(jiǎn)單的情況入手.|a|的幾何意義是a這個(gè)數(shù)在數(shù)軸上對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離.那么|a﹣1|可以看做a這個(gè)數(shù)在數(shù)軸上對(duì)應(yīng)的點(diǎn)到1的距離;|a﹣1|+|a﹣2|就可以看作a這個(gè)數(shù)在數(shù)軸上對(duì)應(yīng)的點(diǎn)到1和2兩個(gè)點(diǎn)的距離之和.下面我們結(jié)合數(shù)軸研究|a﹣1|+|a﹣2|的最小值.
我們先看a表示的點(diǎn)可能的3種情況,如圖所示:
(1)如圖①,a在1的左邊,從圖中很明顯可以看出a到1和2的距離之和大于1.
(2)如圖②,a在1和2之間(包括在1,2上),可以看出a到1和2的距離之和等于1.
(3)如圖③,a在2的右邊,從圖中很明顯可以看出a到1和2的距離之和大于1.
(問題解決)
(1)|a﹣2|+|a﹣5|的幾何意義是 .請(qǐng)你結(jié)合數(shù)軸探究:|a﹣2|+|a﹣5|的最小值是 .
(2)|a﹣1|+|a﹣2|+|a﹣3|的幾何意義是 .請(qǐng)你結(jié)合數(shù)軸探究:|a﹣1|+|a﹣2|+|a﹣3|的最小值是 ,并在圖④的數(shù)軸上描出得到最小值時(shí)a所在的位置,由此可以得出a為 .
(3)求出|a﹣1|+|a﹣2|+|a﹣3|+|a﹣4|+|a﹣5|的最小值.
(4)求出|a﹣1|+|a﹣2|+|a﹣3|+…+|a﹣2019|的最小值.
(拓展應(yīng)用)
請(qǐng)?jiān)趫D⑤的數(shù)軸上表示出a,使它到2,5的距離之和小于4,并直接寫出a的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,半圓O的直徑AB=4,=,DE⊥AB于E,DF⊥AC于F,連接CD,DB,OD.
(1)求證:△CDF≌△BDE;
(2)當(dāng)AD= 時(shí),四邊形AODC是菱形;
(3)當(dāng)AD= 時(shí),四邊形AEDF是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一只不透明的盒子里有背面完全相同,正面上分別寫有數(shù)字1、2、3、4的四張卡片,小馬從中隨機(jī)地抽取一張,把卡片上的數(shù)字作為被減數(shù);在另一只不透明的盒子里將形狀、大小完全相同,分別標(biāo)有數(shù)字1、2、3的三個(gè)小球混合后,小虎從中隨機(jī)地抽取一個(gè),把小球上的數(shù)字做為減數(shù),然后計(jì)算出這兩個(gè)數(shù)的差.
(1)請(qǐng)你用畫樹狀圖或列表的方法,求這兩數(shù)差為0的概率;
(2)小馬與小虎做游戲,規(guī)則是:若這兩數(shù)的差為非正數(shù),則小馬贏;否則小虎贏.你認(rèn)為該游戲公平嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以的一邊為直徑的半圓與其它兩邊,的交點(diǎn)分別為,,且.
(1)試判斷的形狀,并說明理由.
(2)已知半圓的半徑為5,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是“過圓上一點(diǎn)作圓的切線”的尺規(guī)作圖過程.
已知:⊙O和⊙O上一點(diǎn)P.
求作:⊙O的切線MN,使MN經(jīng)過點(diǎn)P.
作法:如圖,
(1)作射線OP;
(2)以點(diǎn)P為圓心,小于OP的長(zhǎng)為半徑作弧交射線OP于A,B兩點(diǎn);
(3)分別以點(diǎn)A,B為圓心,以大于長(zhǎng)為半徑作弧,兩弧交于M,N兩點(diǎn);
(4)作直線MN.則MN就是所求作的⊙O的切線.
請(qǐng)回答:該尺規(guī)作圖的依據(jù)是____________________________________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)和矩形的邊都在直線上,以點(diǎn)為圓心,以24為半徑作半圓,分別交直線于兩點(diǎn).已知: ,,矩形自右向左在直線上平移,當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),矩形停止運(yùn)動(dòng).在平移過程中,設(shè)矩形對(duì)角線與半圓的交點(diǎn)為 (點(diǎn)為半圓上遠(yuǎn)離點(diǎn)的交點(diǎn)).
(1)如圖2,若與半圓相切,求的值;
(2)如圖3,當(dāng)與半圓有兩個(gè)交點(diǎn)時(shí),求線段的取值范圍;
(3)若線段的長(zhǎng)為20,直接寫出此時(shí)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Q是上一定點(diǎn),P是弦AB上一動(dòng)點(diǎn),C為AP中點(diǎn),連接CQ,過點(diǎn)P作交于點(diǎn)D,連接AD,CD.
已知,設(shè)A,P兩點(diǎn)間的距離為,C,D兩點(diǎn)間的距離為.
(當(dāng)點(diǎn)P與點(diǎn)A重合時(shí),令y的值為1.30)
小榮根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探宄.
下面是小榮的探究過程,請(qǐng)補(bǔ)充完整:
(1)按照下表中自變量x的值進(jìn)行取點(diǎn)、畫圖、測(cè)量,得到了y與x的幾組對(duì)應(yīng)值:
(2)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各組對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(3)結(jié)合函數(shù)圖象,解決問題:當(dāng)時(shí),AP的長(zhǎng)度約為__________cm.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com