如圖,已知直線y=3x﹣3分別交x軸、y軸于A、B兩點(diǎn),拋物線y=x2+bx+c經(jīng)過A、B兩點(diǎn),點(diǎn)C是拋物線與x軸的另一個(gè)交點(diǎn)(與A點(diǎn)不重合).
(1)求拋物線的解析式;
(2)求△ABC的面積;
(3)在拋物線的對(duì)稱軸上,是否存在點(diǎn)M,使△ABM為等腰三角形?若不存在,請(qǐng)說明理由;若存在,求出點(diǎn)M的坐標(biāo).
解:(1)∵直線y=3x﹣3分別交x軸、y軸于A、B兩點(diǎn),
∴可得A(1,0),B(0,﹣3),
把A、B兩點(diǎn)的坐標(biāo)分別代入y=x2+bx+c得:,解得:。
∴拋物線解析式為:y=x2+2x﹣3。
(2)令y=0得:0=x2+2x﹣3,解得:x1=1,x2=﹣3。
∴C點(diǎn)坐標(biāo)為:(﹣3,0),AC=4,
∴S△ABC=AC×OB=×4×3=6。
(3)存在。
易得拋物線的對(duì)稱軸為:x=﹣1,假設(shè)存在M(﹣1,m)滿足題意,
根據(jù)勾股定理,得。
分三種情況討論:
①當(dāng)AM=AB時(shí),,解得:。
∴M1(﹣1,),M2(﹣1,)。
②當(dāng)BM=AB時(shí),,解得:M3=0,M4=﹣6。
∴M3(﹣1,0),M4(﹣1,﹣6)。
③當(dāng)AM=BM時(shí),,解得:m=﹣1。
∴M5(﹣1,﹣1)。
綜上所述,共存在五個(gè)點(diǎn)使△ABM為等腰三角形,坐標(biāo)為M1(﹣1,),M2(﹣1,),M3(﹣1,0),M4(﹣1,﹣6),M5(﹣1,﹣1)。
解析試題分析:(1)根據(jù)直線解析式求出點(diǎn)A及點(diǎn)B的坐標(biāo),然后將點(diǎn)A及點(diǎn)B的坐標(biāo)代入拋物線解析式,可得出b、c的值,求出拋物線解析式。
(2)由(1)求得的拋物線解析式,可求出點(diǎn)C的坐標(biāo),繼而求出AC的長度,代入三角形的面積公式即可計(jì)算。
(3)根據(jù)點(diǎn)M在拋物線對(duì)稱軸上,可設(shè)點(diǎn)M的坐標(biāo)為(﹣1,m),分三種情況討論,①AM=AB,②BM=AB,③AM=BM,求出m的值后即可得出答案。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線經(jīng)過A(﹣1,0),B(5,0),C(0,)三點(diǎn).
(1)求拋物線的解析式;
(2)在拋物線的對(duì)稱軸上有一點(diǎn)P,使PA+PC的值最小,求點(diǎn)P的坐標(biāo);
(3)點(diǎn)M為x軸上一動(dòng)點(diǎn),在拋物線上是否存在一點(diǎn)N,使以A,C,M,N四點(diǎn)構(gòu)成的四邊形為平行四邊形?若存在,求點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖所示,已知拋物線y=﹣2x2﹣4x的圖象E,將其向右平移兩個(gè)單位后得到圖象F.
(1)求圖象F所表示的拋物線的解析式:
(2)設(shè)拋物線F和x軸相交于點(diǎn)O、點(diǎn)B(點(diǎn)B位于點(diǎn)O的右側(cè)),頂點(diǎn)為點(diǎn)C,點(diǎn)A位于y軸負(fù)半軸上,且到x軸的距離等于點(diǎn)C到x軸的距離的2倍,求AB所在直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
(2013年四川資陽12分)如圖,四邊形ABCD是平行四邊形,過點(diǎn)A、C、D作拋物線y=ax2+bx+c(a≠0),與x軸的另一交點(diǎn)為E,連結(jié)CE,點(diǎn)A、B、D的坐標(biāo)分別為(﹣2,0)、(3,0)、(0,4).
(1)求拋物線的解析式;
(2)已知拋物線的對(duì)稱軸l交x軸于點(diǎn)F,交線段CD于點(diǎn)K,點(diǎn)M、N分別是直線l和x軸上的動(dòng)點(diǎn),連結(jié)MN,當(dāng)線段MN恰好被BC垂直平分時(shí),求點(diǎn)N的坐標(biāo);
(3)在滿足(2)的條件下,過點(diǎn)M作一條直線,使之將四邊形AECD的面積分為3:4的兩部分,求出該直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線y=ax2+bx+c的開口向下,與x軸交于點(diǎn)A(﹣3,0)和點(diǎn)B(1,0).與y軸交于點(diǎn)C,頂點(diǎn)為D.
(1)求頂點(diǎn)D的坐標(biāo).(用含a的代數(shù)式表示);
(2)若△ACD的面積為3.
①求拋物線的解析式;
②將拋物線向右平移,使得平移后的拋物線與原拋物線交于點(diǎn)P,且∠PAB=∠DAC,求平移后拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,拋物線y=ax2+c(a≠0)經(jīng)過C(2,0),D(0,﹣1)兩點(diǎn),并與直線y=kx交于A、B兩點(diǎn),直線l過點(diǎn)E(0,﹣2)且平行于x軸,過A、B兩點(diǎn)分別作直線l的垂線,垂足分別為點(diǎn)M、N.
(1)求此拋物線的解析式;
(2)求證:AO=AM;
(3)探究:
①當(dāng)k=0時(shí),直線y=kx與x軸重合,求出此時(shí)的值;
②試說明無論k取何值,的值都等于同一個(gè)常數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,△ABC的頂點(diǎn)坐標(biāo)分別為A(﹣6,0),B(4,0),C(0,8),把△ABC沿直線BC翻折,點(diǎn)A的對(duì)應(yīng)點(diǎn)為D,拋物線y=ax2﹣10ax+c經(jīng)過點(diǎn)C,頂點(diǎn)M在直線BC上.
(1)證明四邊形ABCD是菱形,并求點(diǎn)D的坐標(biāo);
(2)求拋物線的對(duì)稱軸和函數(shù)表達(dá)式;
(3)在拋物線上是否存在點(diǎn)P,使得△PBD與△PCD的面積相等?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
“綠色出行,低碳健身”已成為廣大市民的共識(shí).某旅游景點(diǎn)新增了一個(gè)公共自行車停車場(chǎng),6:00至18:00市民可在此借用自行車,也可將在各停車場(chǎng)借用的自行車還于此地.林華同學(xué)統(tǒng)計(jì)了周六該停車場(chǎng)各時(shí)段的借、還自行車數(shù),以及停車場(chǎng)整點(diǎn)時(shí)刻的自行車總數(shù)(稱為存量)情況,表格中x=1時(shí)的y值表示7:00時(shí)的存量,x=2時(shí)的y值表示8:00時(shí)的存量…依此類推.他發(fā)現(xiàn)存量y(輛)與x(x為整數(shù))滿足如圖所示的一個(gè)二次函數(shù)關(guān)系.
時(shí)段 | x | 還車數(shù)(輛) | 借車數(shù)(輛) | 存量y(輛) |
6:00﹣7:00 | 1 | 45 | 5 | 100 |
7:00﹣8:00 | 2 | 43 | 11 | n |
… | … | … | … | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:單選題
函數(shù)的自變量x滿足時(shí),函數(shù)值y滿足,則這個(gè)函數(shù)可以是( )
A. | B. | C. | D. |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com