【題目】如圖,BCD90°,且BCDC,直線PQ經過點D.設PDCα45°α135°),BAPQ于點A,將射線CA繞點C按逆時針方向旋轉90°,與直線PQ交于點E

1)當α125°時,ABC   °;

2)求證:ACCE

3)若ABC的外心在其內部,直接寫出α的取值范圍.

【答案】1125;(2)詳見解析;(345°α90°

【解析】

1)利用四邊形內角和等于360度得:∠B+ADC180°,而∠ADC+EDC180°,即可求解;

2)證明△ABC≌△EDCAAS)即可求解;

3)當∠ABCα90°時,△ABC的外心在其直角邊上,∠ABCα90°時,△ABC的外心在其外部,即可求解.

1)在四邊形BADC中,∠B+ADC360°﹣∠BAD﹣∠DCB180°,

而∠ADC+EDC180°,

∴∠ABC=∠PDCα125°,

故答案為125

2)∠ECD+DCA90°,∠DCA+ACB90°

∴∠ACB=∠ECD,

BCDC,由(1)知:∠ABC=∠PDC

∴△ABC≌△EDCAAS),

ACCE;

3)當∠ABCα90°時,△ABC的外心在其斜邊上;∠ABCα90°時,△ABC的外心在其外部,而45°α135°,故:45°α90°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點D在⊙O的直徑AB的延長線上,CD切⊙O于點C,AECD于點E

(1)求證:AC平分∠DAE;

(2)若AB=6,BD=2,求CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖與y軸分別交于點A,且反比例函數(shù)的圖象在第一象限內的交點為M.

1)求點M的坐標.

2)在x軸上是否存在點P,使AMMP?若存在,求出點P的坐標;若不存在,說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校有3000名學生.為了解全校學生的上學方式,該校數(shù)學興趣小組以問卷調查的形式,隨機調查了該校部分學生的主要上學方式(參與問卷調查的學生只能從以下六個種類中選擇一類),并將調查結果繪制成如下不完整的統(tǒng)計圖.

種類

A

B

C

D

E

F

上學方式

電動車

私家車

公共交通

自行車

步行

其他

某校部分學生主要上學方式扇形統(tǒng)計圖某校部分學生主要上學方式條形統(tǒng)計圖

根據(jù)以上信息,回答下列問題:

(1)參與本次問卷調查的學生共有____人,其中選擇B類的人數(shù)有____人.

(2)在扇形統(tǒng)計圖中,求E類對應的扇形圓心角α的度數(shù),并補全條形統(tǒng)計圖.

(3)若將A、CD、E這四類上學方式視為綠色出行,請估計該校每天綠色出行的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知正方形和正六邊形邊長均為1,如圖所示,把正方形放置在正六邊形外,使邊與邊重合,按下列步驟操作:將正方形在正六邊形外繞點逆時針旋轉,使邊與邊重合,完成第一次旋轉;再繞點逆時針旋轉,使邊與邊重合,完成第二次旋轉;此時點經過路徑的長為___________.若按此方式旋轉,共完成六次,在這個過程中點,之間距離的最大值是______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)的圖象與y軸交于點A,點B(-1,n)是該函數(shù)圖象與反比例函數(shù)(k≠0)圖象在第二象限內的交點.

(1)求點B的坐標及k的值;

(2)試在x軸上確定點C,使AC=AB,請直接寫出C的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y2x4分別交坐標軸于A、B兩點,交雙曲線yx0)于C點,且sinCOB

1)求雙曲線的解析式;

2)若過點B的直線yax+ba0)交y軸于D點,交雙曲線于點E,且ODAD12,求E點橫坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在網格紙中,都是格點,以為圓心,為半徑作圓,用無刻度的直尺完成以下畫圖:(不寫畫法)

1)在圓①中畫圓的一個內接正六邊形

2)在圖②中畫圓的一個內接正八邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形中,點、為邊上的動點(不含端點),.下列三個結論:①當時,則;②;③的周長不變,其中正確結論的個數(shù)是(

A.0B.1

C.2D.3

查看答案和解析>>

同步練習冊答案