(2013•歷城區(qū)三模)如圖,在平面直角坐標(biāo)系中,直線y=kx+n與拋物線y=ax2+bx-3交于A(-2,0)、B(4,3)兩點(diǎn),點(diǎn)P是直線AB下方的拋物線上的一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),過(guò)點(diǎn)P作x軸的垂線交直線AB于點(diǎn)C,作PD⊥AB于點(diǎn)D.
(1)求直線與拋物線的解析式.
(2)設(shè)點(diǎn)P的橫坐標(biāo)為m.
①用含m的代數(shù)式表示線段PD的長(zhǎng),并求出線段PD長(zhǎng)的最大值;
②連結(jié)PB,線段PC把△PDB分成兩個(gè)三角形,是否存在適合的m的值,使這兩個(gè)三角形的面積比為9:10?若存在,直接寫(xiě)出m的值;若不存在,請(qǐng)說(shuō)明理由.
分析:(1)將A與B坐標(biāo)代入y=kx+n中求出k與n的值,確定出直線解析式;將A與B坐標(biāo)代入拋物線解析式求出a與b的值,即可確定出拋物線解析式;
(2)①設(shè)直線AB與x軸交于點(diǎn)E,由CP與y軸平行,得到∠ACP=∠AEO,求出AE與OA的長(zhǎng),得出sin∠AEO的值,即為sin∠ACP的值,由P的橫坐標(biāo)為m,分別代入直線與拋物線解析式得到兩個(gè)縱坐標(biāo)之差為PC的長(zhǎng),由PD=PCsin∠ACP表示出PD,利用二次函數(shù)的性質(zhì)求出PD的最大值即可;
②存在,過(guò)D作DF⊥CP,過(guò)B作BG⊥PQ,交PC延長(zhǎng)線與點(diǎn)Q,表示出DF與BG,進(jìn)而表示出三角形DCP面積與三角形BCP面積,根據(jù)面積之比為9:10列出關(guān)于m的方程,求出方程的解得到m的值即可.
解答:解:(1)將A(-2,0),B(4,3)代入直線y=kx+n中,得:
-2k+n=0
4k+n=3
,
解得:
k=
1
2
n=1

∴直線解析式為y=
1
2
x+1;
將A(-2,0),B(4,3)代入拋物線解析式y(tǒng)=ax2+bx-3得:
4a-2b-3=0
16a+4b-3=3
,
解得:
a=
1
2
b=-
1
2
,
∴拋物線解析式為y=
1
2
x2-
1
2
x-3;

(2)①∵PC∥y軸,
∴∠ACP=∠AEO,
對(duì)于直線y=
1
2
x+1,令y=0,得到x=-2,即AO=2,令x=0,得到y(tǒng)=1,即OE=1,
根據(jù)勾股定理得到AE=
5
,
∴sin∠ACP=sin∠AEO=
OA
AE
=
2
5
5
,
將x=m代入直線解析式得:y=
1
2
m+1;代入拋物線解析式得:y=
1
2
m2-
1
2
m-3,
∴CP=(
1
2
m+1)-(
1
2
m2-
1
2
m-3)=-
1
2
m2+m+4,
∴DP=CP•sin∠ACP=(-
1
2
m2+m+4)×
2
5
5
=-
5
5
(m-1)2+
9
5
5
,
∵-
5
5
<0,
∴當(dāng)m=1時(shí),DP的最大值為
9
5
5
;
②存在,
過(guò)D作DF⊥CP,過(guò)B作BG⊥PQ,交PC延長(zhǎng)線與點(diǎn)Q,
∵sin∠ACP=
2
5
5
,
∴cos∠ACP=
5
5

在Rt△PDF中,DF=DP•sin∠DPC=DP•cos∠ACP=
5
5
×(-
1
2
m2+m+4)×
2
5
5
=-
1
5
(m2+2m-8),
又∵BG=4-m,
S△DCP
S△BCP
=
1
2
DF•CP
1
2
BG•CP
=
DF
BG
=
-
1
5
(m2+2m-8)
4-m
=
m+2
5
,
當(dāng)
S△DCP
S△BCP
=
m+2
5
=
9
10
時(shí),解得:m=
5
2

當(dāng)
S△DCP
S△BCP
=
m+2
5
=
10
9
時(shí),解得:m=
32
9
點(diǎn)評(píng):此題考查了二次函數(shù)綜合題,涉及的知識(shí)有:待定系數(shù)法求函數(shù)解析式,坐標(biāo)與圖形性質(zhì),二次函數(shù)的圖象與性質(zhì),銳角三角函數(shù)定義,同角三角函數(shù)間的基本關(guān)系,以及三角形的面積求法,熟練掌握待定系數(shù)法是解本題第一問(wèn)的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•歷城區(qū)三模)方程組
x-y=2
2x+y=4
的解是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•歷城區(qū)三模)如圖,已知直角梯形ABCD中,AD∥BC,∠BAD=90°,AD=2,AB=4,BC=5,點(diǎn)P為AB邊上一動(dòng)點(diǎn),連接PC、PD,若△PCD為直角三角形,則滿足條件的點(diǎn)P有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•歷城區(qū)三模)如圖,在斜邊長(zhǎng)為1的等腰直角三角形OAB中,作內(nèi)接正方形A1B1D1C1;在等腰直角三角形OA1B1中作內(nèi)接正方形A2B2D2C2;在等腰直角三角形OA2B2中作內(nèi)接正方形A3B3D3C3;…;依次做下去,則第n個(gè)正方形AnBnDnCn的邊長(zhǎng)是
1
3n
1
3n

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•歷城區(qū)三模)(1)先化簡(jiǎn),再求值:(a+b)(a-b)+2a2,其中a=1,b=
2

(2)解不等式組:
x-1
2
≤1
x-2<4(x+1)
并把解集在數(shù)軸上表示出來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•歷城區(qū)三模)如圖,已知點(diǎn)(1,2)在函數(shù)y=
k
x
(x>0)的圖象上,矩形ABCD的邊BC在x正半軸上,E是對(duì)角線AC、BD的交點(diǎn),函數(shù)y=
k
x
(x>0)的圖象又經(jīng)過(guò)A,E兩點(diǎn),點(diǎn)E的縱坐標(biāo)為m.
(1)求k的值;
(2)求點(diǎn)A的坐標(biāo)(用m表示);
(3)是否存在實(shí)數(shù)m,使四邊形ABCD為正方形?若存在,請(qǐng)求出m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案