【題目】如圖,在平面直角坐標系中,點O為坐標原點,拋物線y=ax2﹣10ax+16aa≠0)交x軸于A、B兩點,拋物線的頂點為D,對稱軸與x軸交于點H,且AB=2DH

1)求a的值;

2)點P是對稱軸右側拋物線上的點,連接PDPQx軸于點Q,點N是線段PQ上的點,過點NNFDH于點FNEPD交直線DH于點E,求線段EF的長;

3在(2)的條件下,連接DN、DQ、PB,當DN=2QNNQ3),2NDQ+DNQ=90°時,作NCPB交對稱軸左側的拋物線于點C,求點C的坐標.

【答案】(1);(2)3;(3)點C(﹣1,9)..

【解析】試題分析:(1)根據(jù)y=ax2-10ax+16a可以求得當y=0時,x的值,從而可以求得點A、B的坐標,由拋物線的頂點為D,對稱軸與x軸交于點H,且AB=2DH,從而可以求得a的值;

(2)根據(jù)已知條件作出相應的圖形,然后根據(jù)題意題目中的數(shù)量關系,通過靈活變形可以求得EF的長;

(3)根據(jù)題意可以畫出相應的圖形,然后根據(jù)題目中的關系,利用三角形相似,靈活變化可以求得點C的坐標.

試題解析:(1)令y=0,得x=2或x=8,∴點A(2,0),B(8,0),∴AB=6,

∵AB=2DH,∴DH=3,

∵OH=2+,∴D(5,﹣3),∴﹣3=a×52﹣10a×5+16a,得a=;

(2)如圖1,過點D作PQ的垂線,交PQ的延長線于點M,

∵NE⊥PD,∴∠DPN+∠PNE=90°,∵NF⊥DE,∴∠FEN+∠FNE=90°,

又∵DH⊥x軸,PQ⊥x軸,∴DE∥PQ,∴∠FEN=∠PNE,∴∠DPM=∠ENF,∴△EFN∽△DMP,

,設點P(t, ),則FN=DM=t﹣5,PM=+3,代入解得EF=3;

(3)如圖2,作QG⊥DN于點G,∵DF∥PQ,∴∠FDN=∠DNQ,∵2∠NDQ+∠DNQ=90°,

∴2∠NDQ+∠FDN=90°,∵∠FDM=90°,∴∠NDM=2∠NDQ,∴∠NDQ=∠MDQ,∴QG=QM=DH=3,

設QN=m,則DN=2m,∵sin∠DNM=,sin∠QNG=,sin∠DNM=sin∠QNG,

,得DM=6=DG,∴OQ=5+6=11,

∴點P的縱坐標是: =9,∴點P(11,9),

∵NG=2m﹣6,在Rt△NGQ中,QG2+NG2=QN2,

∴32+(2m﹣6)2=m2,得,m=3(舍)或m=5,

設C(n, ),作CK⊥x軸于點K,作NF⊥CK于點K,則CT=,NT=11﹣n,

∵P(11,9),則BQ=11﹣8=3,PQ=9,

∵CN⊥PB,PQ∥CK,PQ⊥x軸, ∴△CTN∽△BQP,

, 即, 解得,n=﹣1或n=10(舍去),

∴點C(﹣1,9).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC是邊長為6的等邊三角形,點DE分別是邊AB、AC的中點,將ADE繞點A旋轉,BDCE所在的直線交于點F

(1)如圖(2)所示,將ADE繞點A逆時針旋轉,且旋轉角不大于60°,∠CFB的度數(shù)是多少?說明你的理由?

(2)ADE繞點A旋轉時,若BCF為直角三角形,求出線段BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC是一張銳角三角形的硬紙片.AD是邊BC上的高,BC=40cm,AD=30cm.從這張硬紙片剪下一個長HG是寬HE2倍的矩形EFGH.使它的一邊EFBC上,頂點G,H分別在AC,AB上.ADHG的交點為M.

1)求證: ;

(2)求這個矩形EFGH的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線圖像與y軸、x軸分別交于A、B兩點

1)求點A、B坐標和∠BAO度數(shù)

2)點C、D分別是線段OA、AB上一動點(不與端點重合),且CD=DA,設線段OC的長度為x ,,請求出y關于x的函數(shù)關系式以及定義域

3)點C、D分別是射線OA、射線BA上一動點,且CD=DA,當ΔODB為等腰三角形時,求C的坐標(第(3)小題直接寫出分類情況和答案,不用過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCD中,E,F(xiàn)是對角線BD上的兩點,如果添加一個條件,使△ABE≌△CDF,則添加的條件不能為( 。

A. BE=DF B. BF=DE C. AE=CF D. ∠1=∠2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知數(shù)軸上的AB兩點分別對應數(shù)字a、b,且a、b滿足|4a-b|+a-42=0

1a= ,b= ,并在數(shù)軸上面出A、B兩點;

2)若點P從點A出發(fā),以每秒3個單位長度向x軸正半軸運動,求運動時間為多少時,點P到點A的距離是點P到點B距離的2倍;

3)數(shù)軸上還有一點C的坐標為30,若點P和點Q同時從點A和點B出發(fā),分別以每秒3個單位長度和每秒1個單位長度的速度向C點運動,P點到達C點后,再立刻以同樣的速度返回,運動到終點A.求點P和點Q運動多少秒時,P、Q兩點之間的距離為4,并求此時點Q對應的數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算(1 2

3 4

5 6

7 8

9 10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探究數(shù)軸上任意兩點之間的距離與這兩點對應的數(shù)的關系.

(1)如果點A表示數(shù)5,將點A先向左移動4個單位長度到達點B,那么點B表示的數(shù)是  ,A、B兩點間的距離是  

如果點A表示數(shù)﹣2,將點A向右移動5個單位長度到達點B,那么點B表示的數(shù)是  ,A、B兩點間的距離是 

(2)發(fā)現(xiàn):在數(shù)軸上,如果點M對應的數(shù)是m,點N對應的數(shù)是n,那么點M與點N之間的距離可表示為  (用m、n表示,且m≥n).

(3)應用利用你發(fā)現(xiàn)的結論解決下列問題:數(shù)軸上表示x和﹣2的兩點P與Q之間的距離是3,則x=  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,測量人員在山腳A處測得山頂B的仰角為45°,沿著仰角為30°的山坡前進1000米到達D處,在D處測得山頂B的仰角為60°,求山的高度?

查看答案和解析>>

同步練習冊答案