已知:直線AB與直線CD相交于點(diǎn)O,∠BOC=45°,
(1)如圖1,若EO⊥AB,求∠DOE的度數(shù);
(2)如圖2,若EO平分∠AOC,求∠DOE的度數(shù).
分析:(1)根據(jù)對(duì)頂角相等求∠AOD,由垂直的性質(zhì)求∠AOE,根據(jù)∠DOE=∠AOD+∠AOE求解;
(2)由鄰補(bǔ)角的性質(zhì)求∠AOC,根據(jù)EO平分∠AOC求∠AOE,再由∠DOE=∠AOD+∠AOE求解.
解答:解:(1)∵直線AB與直線CD相交,
∴∠AOD=∠BOC=45°.
∵EO⊥AB,
∴∠AOE=90°,
∴∠DOE=∠AOD+∠AOE=135°;

(2)∵直線AB與直線CD相交,
∴∠AOD=∠BOC=45°,∠AOC=135°,
∵EO平分∠AOC,
∴∠AOE=
1
2
∠AOC=67.5°,
∴∠DOE=∠AOD+∠AOE=112.5°.
點(diǎn)評(píng):本題考查了對(duì)頂角,鄰補(bǔ)角的性質(zhì),角平分線的性質(zhì),垂直的定義.關(guān)鍵是采用形數(shù)結(jié)合的方法解題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:直線AB與直線CD相交于點(diǎn)O,∠BOC=45°.
(1)如圖1,若EO⊥AB,求∠DOE的度數(shù);
(2)如圖2,若FO平分∠AOC,求∠DOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第34章《二次函數(shù)》中考題集(39):34.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為C(1,1),直線y=kx+m的圖象與該二次函數(shù)的圖象交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(,),B點(diǎn)在y軸上,直線與x軸的交點(diǎn)為F,P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A、B不重合),過P作x軸的垂線與這個(gè)二次函數(shù)的圖象交于E點(diǎn).
(1)求k,m的值及這個(gè)二次函數(shù)的解析式;
(2)設(shè)線段PE的長為h,點(diǎn)P的橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)D為直線AB與這個(gè)二次函數(shù)圖象對(duì)稱軸的交點(diǎn),在線段AB上是否存在點(diǎn)P,使得以點(diǎn)P、E、D為頂點(diǎn)的三角形與△BOF相似?若存在,請求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》中考題集(38):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為C(1,1),直線y=kx+m的圖象與該二次函數(shù)的圖象交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(,),B點(diǎn)在y軸上,直線與x軸的交點(diǎn)為F,P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A、B不重合),過P作x軸的垂線與這個(gè)二次函數(shù)的圖象交于E點(diǎn).
(1)求k,m的值及這個(gè)二次函數(shù)的解析式;
(2)設(shè)線段PE的長為h,點(diǎn)P的橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)D為直線AB與這個(gè)二次函數(shù)圖象對(duì)稱軸的交點(diǎn),在線段AB上是否存在點(diǎn)P,使得以點(diǎn)P、E、D為頂點(diǎn)的三角形與△BOF相似?若存在,請求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年中招考試說明解密預(yù)測數(shù)學(xué)試卷(五)(解析版) 題型:解答題

(2008•呼和浩特)如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為C(1,1),直線y=kx+m的圖象與該二次函數(shù)的圖象交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(,),B點(diǎn)在y軸上,直線與x軸的交點(diǎn)為F,P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A、B不重合),過P作x軸的垂線與這個(gè)二次函數(shù)的圖象交于E點(diǎn).
(1)求k,m的值及這個(gè)二次函數(shù)的解析式;
(2)設(shè)線段PE的長為h,點(diǎn)P的橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)D為直線AB與這個(gè)二次函數(shù)圖象對(duì)稱軸的交點(diǎn),在線段AB上是否存在點(diǎn)P,使得以點(diǎn)P、E、D為頂點(diǎn)的三角形與△BOF相似?若存在,請求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案