如圖,ABCD為平行四邊形,DFEC和BCGH為正方形.求證:AC⊥EG.

【答案】分析:本題中要證AC⊥EG也就是證∠CGE+∠GCA=90°,我們發(fā)現(xiàn)∠GBA+∠ACB=90°,因此證明∠CGE=∠ACB就是問題的關(guān)鍵,我們可通過證明三角形ABC和ECG全等來實現(xiàn).
解答:證明:∵四邊形BCGH、EFDC為正方形,四邊形ABCD為平行四邊形,
∴GC∥BH,DC∥AB,∠HBC=∠ECD=90°,
∴∠HBA=∠GCD(兩邊分別平行的兩角相等或互補),
∴∠HBC+∠HBA=∠GCD+∠ECD,即90°+∠HBA=∠GCD+90°,
∴∠GCE=∠ABC,
∴AB=DC=EC,BC=CG,
在△ABC和和△ECG中,
,
∴△ABC≌△ECG(SAS),
∴∠CGE=∠ACB,
∵∠ACB+∠GCA=90°,
∴∠CGE+∠GCA=90°,
∴AC⊥EG.
點評:本題主要考查了正方形、平行四邊形的性質(zhì),通過全等三角形來得出角相等是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,ABCD為平行四邊形,以BC為直徑的⊙O經(jīng)過點A,∠D=60°,BC=2,一動點P在AD上移動,過點P作直線AB的垂線,分別交直線AB、CD于E、F,設(shè)點O到EF的距離為t,若B、P、F三點能構(gòu)成三角形,設(shè)此時△BPF的面積為S.
(1)計算平行四邊形ABCD的面積;
(2)求S關(guān)于t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(3)△BPF的面積存在最大值嗎?若存在,請求出這個最大值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,ABCD為平行四邊形,DFEC和BCGH為正方形.求證:AC⊥EG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,ABCD為平行四邊形,BE∥AC,DE交AC延長線于F點,交BE于E點.
(1)求證:DF=FE;
(2)若CF=
2
5
AC,AD⊥DE,AC⊥DC,DC=
10
,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011—2012學(xué)年山東濰坊八年級下期末模擬數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,ABCD為平行四邊形,AD=2,BE∥AC,DE交AC的延長線于F點,交BE于E點.

(1)求證:EF=DF;
(2)若AC=2CF,∠ADC=60 o, AC⊥DC,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年山東濰坊八年級下期末模擬數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,ABCD為平行四邊形,AD=2,BE∥AC,DE交AC的延長線于F點,交BE于E點.

(1)求證:EF=DF;

(2)若AC=2CF,∠ADC=60 o, AC⊥DC,求DE的長.

 

查看答案和解析>>

同步練習(xí)冊答案