已知:如圖,在四邊形ABCD中, AD=BC,∠A、∠B均為銳角.

當(dāng)∠A=∠B時(shí),則CD與A B的位置關(guān)系是CD     AB,大小關(guān)系是CD     AB;
當(dāng)∠A>∠B時(shí),(1)中C D與A B的大小關(guān)系是否還成立,證明你的結(jié)論.

解:
(1)答:如圖1,

CD∥AB ,CD<AB.            …………2分
(2)答:CD<AB還成立.               …………3分
證法1:如圖2,分別過(guò)點(diǎn)D、B作BC、CD的平行線(xiàn),兩線(xiàn)交于F點(diǎn).

∴ 四邊形DCBF為平行四邊形.

∵ AD=BC,
∴ AD=FD.                      …………4分
作∠ADF的平分線(xiàn)交AB于G點(diǎn),連結(jié)GF.
∴ ∠ADG=∠FDG.
在△ADG和△FDG中

∴ △ADG≌△FDG.
∴ AG=FG.                        …………5分
∵在△BFG中,.    
                  …………6分
∴ DC<AB.                        …………7分
證法2:如圖3,分別過(guò)點(diǎn)D、B作AB、AD的平行線(xiàn),兩線(xiàn)交于F點(diǎn).

∴ 四邊形DABF為平行四邊形.

∵ AD=BC,
∴ BC=BF.
作∠CBF的平分線(xiàn)交DF于G點(diǎn),連結(jié)CG.
以下同證法1

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

39、已知:如圖,在四邊形ABCD中,AB=DC,AD=BC,點(diǎn)E在BC上,點(diǎn)F在AD上,AF=CE,EF與對(duì)角線(xiàn)BD相交于點(diǎn)O.求證:O是BD的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、已知,如圖,在四邊形ABCD中,AB=BC=CD=DA,∠A=∠C=72°.
請(qǐng)?jiān)O(shè)計(jì)兩種不同的分法,將四邊形ABCD分割成四個(gè)三角形,使得分割成的每個(gè)三角形都是等腰三角形.畫(huà)法要求如下:
(1)兩種分法只要有一條分割線(xiàn)段位置不同,就認(rèn)為是兩種不同的分法;
(2)畫(huà)圖工具不限,但要求畫(huà)出分割線(xiàn)段;
(3)標(biāo)出能夠說(shuō)明不同分法所得三角形的內(nèi)角度數(shù),例如樣圖;
(4)不要求寫(xiě)出畫(huà)法,不要求證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,在四邊形ABCD中,AD∥BC,AC⊥BC,點(diǎn)E、F分別是邊AB、CD的中點(diǎn),AF=CE.求證:AD=BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,在四邊形ABCD中,∠ABC=90°,CD⊥AD,AD2+CD2=2AB2
(1)求證:AB=BC;
(2)當(dāng)BE⊥AD于E時(shí),試證明:BE=AE+CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,在四邊形ABCD中,AD=BC,M、N分別是AB、CD的中點(diǎn),AD、BC的延長(zhǎng)線(xiàn)交MN于E、F.
求證:∠DEN=∠F.

查看答案和解析>>

同步練習(xí)冊(cè)答案