(2012•衡陽(yáng))已知⊙O的直徑等于12cm,圓心O到直線l的距離為5cm,則直線l與⊙O的交點(diǎn)個(gè)數(shù)為( 。
分析:首先求得該圓的半徑,再根據(jù)直線和圓的位置關(guān)系與數(shù)量之間的聯(lián)系進(jìn)行分析判斷.若d<r,則直線與圓相交;若d=r,則直線于圓相切;若d>r,則直線與圓相離,
進(jìn)而利用直線與圓相交有兩個(gè)交點(diǎn),相切有一個(gè)交點(diǎn),相離沒有交點(diǎn),即可得出答案.
解答:解:根據(jù)題意,得
該圓的半徑是6cm,即大于圓心到直線的距離5cm,則直線和圓相交,
故直線l與⊙O的交點(diǎn)個(gè)數(shù)為2.
故選:C.
點(diǎn)評(píng):此題主要考查了直線與圓的位置關(guān)系,這里要特別注意12是圓的直徑;掌握直線和圓的位置關(guān)系與數(shù)量之間的聯(lián)系是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•衡陽(yáng))如圖所示,已知拋物線的頂點(diǎn)為坐標(biāo)原點(diǎn)O,矩形ABCD的頂點(diǎn)A,D在拋物線上,且AD平行x軸,交y軸于點(diǎn)F,AB的中點(diǎn)E在x軸上,B點(diǎn)的坐標(biāo)為(2,1),點(diǎn)P(a,b)在拋物線上運(yùn)動(dòng).(點(diǎn)P異于點(diǎn)O)
(1)求此拋物線的解析式.
(2)過點(diǎn)P作CB所在直線的垂線,垂足為點(diǎn)R,
①求證:PF=PR;
②是否存在點(diǎn)P,使得△PFR為等邊三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
③延長(zhǎng)PF交拋物線于另一點(diǎn)Q,過Q作BC所在直線的垂線,垂足為S,試判斷△RSF的形狀.

查看答案和解析>>

同步練習(xí)冊(cè)答案