如圖,在矩形OABC中,AO=10,AB=8,沿直線CD折疊矩形OABC的一邊BC,使點B落在OA邊上的點E處.分別以O(shè)C,OA所在的直線為x軸,y軸建立平面直角坐標系,拋物線y=ax2+bx+c經(jīng)過O,D,C三點.
(1)求AD的長及拋物線的解析式;
(2)一動點P從點E出發(fā),沿EC以每秒2個單位長的速度向點C運動,同時動點Q從點C出發(fā),沿CO以每秒1個單位長的速度向點O運動,當點P運動到點C時,兩點同時停止運動.設(shè)運動時間為t秒,當t為何值時,以P、Q、C為頂點的三角形與△ADE相似?
(3)點N在拋物線對稱軸上,點M在拋物線上,是否存在這樣的點M與點N,使以M,N,C,E為頂點的四邊形是平行四邊形?若存在,請直接寫出點M與點N的坐標(不寫求解過程);若不存在,請說明理由.

【答案】分析:(1)根據(jù)折疊圖形的軸對稱性,△CED、△CBD全等,首先在Rt△CEO中求出OE的長,進而可得到AE的長;在Rt△AED中,AD=AB-BD、ED=BD,利用勾股定理可求出AD的長.進一步能確定D點坐標,利用待定系數(shù)法即可求出拋物線的解析式.
(2)由于∠DEC=90°,首先能確定的是∠AED=∠OCE,若以P、Q、C為頂點的三角形與△ADE相似,那么∠QPC=90°或∠PQC=90°,然后在這兩種情況下,分別利用相似三角形的對應(yīng)邊成比例求出對應(yīng)的t的值.
(3)由于以M,N,C,E為頂點的四邊形,邊和對角線都沒明確指出,所以要分情況進行討論:
①EC做平行四邊形的對角線,那么EC、MN必互相平分,由于EC的中點正好在拋物線對稱軸上,所以M點一定是拋物線的頂點;
②EC做平行四邊形的邊,那么EC、MN平行且相等,首先設(shè)出點N的坐標,然后結(jié)合E、C的橫、縱坐標差表示出M點坐標,再將點M代入拋物線的解析式中,即可確定M、N的坐標.
解答:解:(1)∵四邊形ABCO為矩形,
∴∠OAB=∠AOC=∠B=90°,AB=CO=8,AO=BC=10.
由題意,△BDC≌△EDC.
∴∠B=∠DEC=90°,EC=BC=10,ED=BD.
由勾股定理易得EO=6.
∴AE=10-6=4,
設(shè)AD=x,則BD=ED=8-x,由勾股定理,得x2+42=(8-x)2
解得,x=3,∴AD=3.
∵拋物線y=ax2+bx+c過點D(3,10),C(8,0),O(0,0)

解得
∴拋物線的解析式為:y=-x2+x.

(2)∵∠DEA+∠OEC=90°,∠OCE+∠OEC=90°,
∴∠DEA=∠OCE,
由(1)可得AD=3,AE=4,DE=5.
而CQ=t,EP=2t,∴PC=10-2t.
當∠PQC=∠DAE=90°,△ADE∽△QPC,
=,即=
解得t=
當∠QPC=∠DAE=90°,△ADE∽△PQC,
=,即=,
解得t=
∴當t=時,以P、Q、C為頂點的三角形與△ADE相似.

(3)假設(shè)存在符合條件的M、N點,分兩種情況討論:

EC為平行四邊形的對角線,由于拋物線的對稱軸經(jīng)過EC中點,若四邊形MENC是平行四邊形,那么M點必為拋物線頂點;
則:M(4,);而平行四邊形的對角線互相平分,那么線段MN必被EC中點(4,3)平分,則N(4,-);
②EC為平行四邊形的邊,則ECMN,設(shè)N(4,m),則M(4-8,m+6)或M(4+8,m-6);
將M(-4,m+6)代入拋物線的解析式中,得:m=-38,此時 N(4,-38)、M(-4,-32);
將M(12,m-6)代入拋物線的解析式中,得:m=-26,此時 N(4,-26)、M(12,-32);
綜上,存在符合條件的M、N點,且它們的坐標為:
①M1(-4,-32),N1(4,-38);②M2(12,-32),N2(4,-26);③M3(4,),N3(4,-).
點評:考查了二次函數(shù)綜合題,題目涉及了圖形的折疊變換、相似三角形的判定和性質(zhì)、平行四邊形的判定和性質(zhì)等重點知識.后兩問的情況較多,需要進行分類討論,以免漏解.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,在矩形OABC中,已知A、C兩點的坐標分別為A(4,0)、C(0,2),D為OA的中點.設(shè)點這P是∠AOC平分線上的一個動點(不與點O重合).
(1)填空:無論點P運動到何處,PC
 
PD(填“>”、“<”或“=”);
(2)當點P運動到與點B的距離最小時,試確定過O、P、D三點的拋物線的解析式;
(3)設(shè)點E是(2)中所確定拋物線的頂點,當點P運動到何處時,△PDE的周長最?求精英家教網(wǎng)出此時點P的坐標和△PDE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形OABC中,已知A、C兩點的坐標分別為A(4,0)、C(0,2),D為OA的中點.設(shè)點P是∠AOC精英家教網(wǎng)平分線上的一個動點(不與點O重合).
(1)試證明:無論點P運動到何處,PC總與PD相等;
(2)當點P運動到與點B的距離最小時,試確定過O、P、D三點的拋物線的解析式;
(3)設(shè)點E是(2)中所確定拋物線的頂點,當點P運動到何處時,△PDE的周長最小?求出此時點P的坐標和△PDE的周長;
(4)設(shè)點N是矩形OABC的對稱中心,是否存在點P,使∠CPN=90°?若存在,請直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在矩形OABC中,AB∥x軸.函數(shù)y=
1x
(x>0)
的圖象分別交AB、BC邊于P、Q兩點,且P是精英家教網(wǎng)AB的中點,設(shè)點P的橫坐標為a.
(1)用含a的代數(shù)式表示點Q的坐標.
(2)試說明點Q是BC的中點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•莆田質(zhì)檢)如圖,在矩形OABC中,OA、OC兩邊分別在x軸、y軸的正半軸上,OA=3,OC=2,過OA邊上的D點,沿著BD翻折△ABD,點A恰好落在BC邊上的點E處,反比例函數(shù)y=
kx
(k>0)在第一象限上的圖象經(jīng)過點E與BD相交于點F.
(1)求證:四邊形ABED是正方形;
(2)點F是否為正方形ABED的中心?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•永春縣質(zhì)檢)如圖,在矩形OABC中,點A、C的坐標分別是(a,0),(0,
3
),點D是線段BC上的動點(與B、C不重合),過點D作直線l:y=-
3
x+b
交線段OA于點E.
(1)直接寫出矩形OABC的面積(用含a的代數(shù)式表示);
(2)已知a=3,當直線l將矩形OABC分成周長相等的兩部分時
①求b的值;
②梯形ABDE的內(nèi)部有一點P,當⊙P與AB、AE、ED都相切時,求⊙P的半徑.
(3)已知a=5,若矩形OABC關(guān)于直線DE的對稱圖形為四邊形O1A1B1C1,設(shè)CD=k,當k滿足什么條件時,使矩形OABC和四邊形O1A1B1C1的重疊部分的面積為定值,并求出該定值.

查看答案和解析>>

同步練習冊答案