【題目】如圖①所示,已知A、B為直線l上兩點,點C為直線l上方一動點,連接AC、BC,分別以AC、BC為邊向△ABC外作正方形CADF和正方形CBEG,過點D作DD1⊥l于點D1 , 過點E作EE1⊥l于點E1
(1)如圖②,當點E恰好在直線l上時(此時E1與E重合),試說明DD1=AB;
(2)在圖①中,當D、E兩點都在直線l的上方時,試探求三條線段DD1、EE1、AB之間的數(shù)量關(guān)系,并說明理由;
(3)如圖③,當點E在直線l的下方時,請直接寫出三條線段DD1、EE1、AB之間的數(shù)量關(guān)系.(不需要證明)

【答案】
(1)證明:∵四邊形CADF、CBEG是正方形,

∴AD=CA,∠DAC=∠ABC=90°,

∴∠DAD1+∠CAB=90°,

∵DD1⊥AB,

∴∠DD1A=∠ABC=90°,

∴∠DAD1+∠ADD1=90°,

∴∠ADD1=∠CAB,

在△ADD1和△CAB中,

∴△ADD1≌△CAB(AAS),

∴DD1=AB


(2)解:AB=DD1+EE1

證明:過點C作CH⊥AB于H,

∵DD1⊥AB,

∴∠DD1A=∠CHA=90°,

∴∠DAD1+∠ADD1=90°,

∵四邊形CADF是正方形,

∴AD=CA,∠DAC=90°,

∴∠DAD1+∠CAH=90°,

∴∠ADD1=∠CAH,

在△ADD1和△CAH中,

∴△ADD1≌△CAH(AAS),

∴DD1=AH;

同理:EE1=BH,

∴AB=AH+BH=DD1+EE1;


(3)解:AB=DD1﹣EE1

證明:過點C作CH⊥AB于H,

∵DD1⊥AB,

∴∠DD1A=∠CHA=90°,

∴∠DAD1+∠ADD1=90°,

∵四邊形CADF是正方形,

∴AD=CA,∠DAC=90°,

∴∠DAD1+∠CAH=90°,

∴∠ADD1=∠CAH,

在△ADD1和△CAH中,

∴△ADD1≌△CAH(AAS),

∴DD1=AH;

同理:EE1=BH,

∴AB=AH﹣BH=DD1﹣EE1


【解析】(1)由四邊形CADF、CBEG是正方形,可得AD=CA,∠DAC=∠ABC=90°,又由同角的余角相等,求得∠ADD1=∠CAB,然后利用AAS證得△ADD1≌△CAB,根據(jù)全等三角形的對應(yīng)邊相等,即可得DD1=AB;(2)首先過點C作CH⊥AB于H,由DD1⊥AB,可得∠DD1A=∠CHA=90°,由四邊形CADF是正方形,可得AD=CA,又由同角的余角相等,求得∠ADD1=∠CAH,然后利用AAS證得△ADD1≌△CAH,根據(jù)全等三角形的對應(yīng)邊相等,即可得DD1=AH,同理EE1=BH,則可得AB=DD1+EE1 . (3)證明方法同(2),易得AB=DD1﹣EE1

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,AB=6,AC=8,BC=10,D是△ABC內(nèi)部或BC邊上的一個動點(與B、C不重合),以D為頂點作△DEF,使△DEF∽△ABC(相似比k>1),EF∥BC.

(1)求∠D的度數(shù);
(2)若兩三角形重疊部分的形狀始終是四邊形AGDH.
①如圖1,連接GH、AD,當GH⊥AD時,請判斷四邊形AGDH的形狀,并證明;
②當四邊形AGDH的面積最大時,過A作AP⊥EF于P,且AP=AD,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】
(1)計算: ﹣4sin45°+(﹣2012)0
(2)化簡: ÷(x+1).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的布袋里裝有4個大小,質(zhì)地都相同的乒乓球,球面上分別標有數(shù)字1,﹣2,3,﹣4,小明先從布袋中隨機摸出一個球(不放回去),再從剩下的3個球中隨機摸出第二個乒乓球.
(1)共有種可能的結(jié)果.
(2)請用畫樹狀圖或列表的方法求兩次摸出的乒乓球的數(shù)字之積為偶數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,D、E分別是邊AB、AC的中點,∠B=50°.先將△ADE沿DE折疊,點A落在三角形所在平面內(nèi)的點為A1 , 則∠BDA1的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=﹣(x﹣1)2+5,當m≤x≤n且mn<0時,y的最小值為2m,最大值為2n,則m+n的值為( 。
A.
B.2
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知點E,F(xiàn),G,H分別是四邊形ABCD各邊AB,BC,CD,DA的中點,根據(jù)以下思路可以證明四邊形EFGH是平行四邊形:
(1)如圖2,將圖1中的點C移動至與點E重合的位置,F(xiàn),G,H仍是BC,CD,DA的中點,求證:四邊形CFGH是平行四邊形;
(2)如圖3,在邊長為1的小正方形組成的5×5網(wǎng)格中,點A,C,B都在格點上,在格點上畫出點D,使點C與BC,CD,DA的中點F,G,H組成正方形CFGH;
(3)在(2)條件下求出正方形CFGH的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,△ABC中,D是BC邊上一點,E是AD的中點,過點A作BC的平行線交CE的延長線于F,且AF=BD,連接BF.

(1)求證:D是BC的中點;
(2)若AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=﹣x+5與雙曲線y= (x>0)相交于A,B兩點,與x軸相交于C點,△BOC的面積是 .若將直線y=﹣x+5向下平移1個單位,則所得直線與雙曲線y= (x>0)的交點有(  )

A.0個
B.1個
C.2個
D.0個,或1個,或2個

查看答案和解析>>

同步練習冊答案