【題目】如圖,已知點(diǎn)A(0,2),B(2,2),C(-1,-2),拋物線F: 與直線x=-2交于點(diǎn)P.

(1)當(dāng)拋物線F經(jīng)過(guò)點(diǎn)C時(shí),求它的表達(dá)式;
(2)拋物線F上有兩點(diǎn)M 、N ,若-2≤ ,求m的取值范圍;
(3)設(shè)點(diǎn)P的縱坐標(biāo)為 ,求 的最小值,此時(shí)拋物線F上有兩點(diǎn)M 、N ,
≤-2,比較 的大小;
(4)當(dāng)拋物線F與線段AB有公共點(diǎn)時(shí),直接寫(xiě)出m的取值范圍。

【答案】
(1)

解:∵拋物線F經(jīng)過(guò)點(diǎn)C(-1,-2),

.

m=-1.

∴拋物線F的表達(dá)式是


(2)

解:拋物線F的對(duì)稱軸為:直線x=m,

當(dāng)x≥m時(shí),yx的增大而增大;

點(diǎn)M、N均在直線x=-2的右側(cè),

∴直線x=-2必須在直線x=m右側(cè)或與之重合

∴m≤-2


(3)

解:方法一:當(dāng)x=-2時(shí), = .

∴當(dāng)m=-2時(shí), 的最小值=-2.

此時(shí)拋物線F的表達(dá)式是 .

∴當(dāng) 時(shí),yx的增大而減小.

≤-2,

> .

方法二:當(dāng)直線x=-2與拋物線F的對(duì)稱軸(直線x=m)重合時(shí),

有最小值,此時(shí)m=-2

此時(shí)拋物線F的表達(dá)式是 .

∴當(dāng) 時(shí),yx的增大而減小.

≤-2,

> .


(4)

.


【解析】(4)解:∵拋物線F與線段AB有公共點(diǎn),點(diǎn)A(0,2),B(2,2),
,
解得:-2≤m≤0或2 ≤ m ≤ 4 .
所以答案是:-2≤m≤0或2 ≤ m ≤ 4 .
【考點(diǎn)精析】本題主要考查了二次函數(shù)的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減。粚(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)P在邊CD上,且與C、D不重合,過(guò)點(diǎn)A作AP的垂線與CB的延長(zhǎng)線相交于點(diǎn)Q,連接PQ,M為PQ中點(diǎn).

(1)求證:△ADP∽△ABQ;
(2)若AD=10,AB=20,點(diǎn)P在邊CD上運(yùn)動(dòng),設(shè)DP=x,BM2=y,求y與x的函數(shù)關(guān)系式,并求線段BM的最小值;
(3)若AD=10,AB=a,DP=8,隨著a的大小的變化,點(diǎn)M的位置也在變化.當(dāng)點(diǎn)M落在矩形ABCD外部時(shí),求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=a(x﹣m)2﹣a(x﹣m)(a,m為常數(shù),且a≠0).
(1)求證:不論a與m為何值,該函數(shù)的圖象與x軸總有兩個(gè)公共點(diǎn).
(2)設(shè)該函數(shù)的圖象的頂點(diǎn)為C,與x軸交于A,B兩點(diǎn),與y軸交于D點(diǎn).
①當(dāng)△ABC的面積為1時(shí),求a的值.
②當(dāng)△ABC的面積與△ABD的面積相等時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線y1=﹣x2+mx+n,直線y2=kx+b,y1的對(duì)稱軸與y2交于點(diǎn)A(﹣1,5),點(diǎn)A與y1的頂點(diǎn)B的距離是4.
(1)求y1的解析式;
(2)若y2隨著x的增大而增大,且y1與y2都經(jīng)過(guò)x軸上的同一點(diǎn),求y2的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有下列四個(gè)結(jié)論:
①a÷m+a÷n=a÷(m+n);
② 某商品單價(jià)為a元。甲商店連續(xù)降價(jià)兩次,每次都降10%。乙商店直接降20%。顧客選擇甲或乙商店購(gòu)買(mǎi)同樣數(shù)量的此商品時(shí),獲得的優(yōu)惠是相同的;
③若 ,則 的值為 ;
④關(guān)于x分式方程 的解為正數(shù),則 >1。
請(qǐng)?jiān)谡_結(jié)論的題號(hào)后的空格里填“正確” ,在錯(cuò)誤結(jié)論的題號(hào)后空格里填“錯(cuò)誤”:
; ②; ③; ④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,半圓O的直徑AC=2 ,點(diǎn)B為半圓的中點(diǎn),點(diǎn)D在弦AB上,連結(jié)CD,作BF⊥CD于點(diǎn)E,交AC于點(diǎn)F,連結(jié)DF,當(dāng)△BCE和△DEF相似時(shí),BD的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c與直線y=x交于(1,1)和(3,3)兩點(diǎn),現(xiàn)有以下結(jié)論:①b2﹣4c>0;
②3b+c+6=0;
③當(dāng)x2+bx+c> 時(shí),x>2;
④當(dāng)1<x<3時(shí),x2+(b﹣1)x+c<0,
其中正確的序號(hào)是(

A.①②④
B.②③④
C.②④
D.③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BM是⊙O的直徑,四邊形ABMN是矩形,D是⊙O上的點(diǎn),DC⊥AN,與AN交于點(diǎn)C,己知AC=15,⊙O的半徑為30,求 的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,甲轉(zhuǎn)盤(pán)被分成 3 個(gè)面積相等的扇形,乙轉(zhuǎn)盤(pán)被分成4個(gè)面積相等的扇形,每一個(gè)扇形都標(biāo)有相應(yīng)的數(shù)字.同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤(pán),當(dāng)轉(zhuǎn)盤(pán)停止后,設(shè)甲轉(zhuǎn)盤(pán)中指針?biāo)竻^(qū)域內(nèi)的數(shù)字為x,乙轉(zhuǎn)盤(pán)中指針?biāo)竻^(qū)域內(nèi)的數(shù)字為y(當(dāng)指針指在邊界線上時(shí),重轉(zhuǎn),直到指針指向一個(gè)區(qū)域?yàn)橹梗?
(1)請(qǐng)你用畫(huà)樹(shù)狀圖或列表格的方法,求點(diǎn)(x,y)落在第二象限內(nèi)的概率;
(2)直接寫(xiě)出點(diǎn)(x,y)落在函數(shù)y=﹣ 圖象上的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案