如圖,已知△ABC中,AB=AC,AB邊上的垂直平分線DE交BA于點D,交AC于點E.
(1)若AB=8cm,△BCE的周長是14cm,求BC的長;
(2)若∠ABE:∠EBC=2:1,求∠A的度數(shù).

(1)BC=6cm;(2)∠A=45°

解析試題分析:(1)由DE是AB邊上的垂直平分線,AE=BE,然后AB=8cm,△BCE的周長是14cm,即可得AC+BC=14cm,繼而求得BC的長;
(2)由∠ABE:∠EBC=2:1,可設∠ABE=2x°,∠EBC=x°,然后由等腰三角形的性質(zhì)與三角形內(nèi)角和定理,可得方程:3x+2x+3x=180,繼而求得答案.
(1)∵DE垂直平分AB,AE=BE,
∵△BCE的周長是14cm,
∴BE+EC+BC=14,
即AE+EC+BC=14,
AC+BC=14,
∵AC=AB=8cm,
∴BC=6cm.
(2)設∠EBC=x°,則∠ABE=2x°,
∵AE=BE,
∴∠A=∠ABE=2x,
∵AB=AC,
∴∠ABC=∠C=3x,
∵∠A+∠ABC+∠C=180°,
∴2x+3x+3x=180°,
∴8x=180°,
∴x=22.5°,
∴∠A=∠ABE=45°.
考點:本題主要考查線段的垂直平分線的性質(zhì)及等腰三角形的性質(zhì),三角形內(nèi)角和定理
點評:進行線段的等量代換及求得角之間的關系式正確解答本題的關鍵.此題難度不大,注意掌握數(shù)形結(jié)合思想與方程思想的應用.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC中,AB=AC,E、F分別在AB、AC上且AE=CF.
求證:EF≥
12
BC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC中,P是AB上一點,連接CP,以下條件不能判定△ACP∽△ABC的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•梓潼縣一模)如圖,已知△ABC中,∠C=90°,AC=4,BC=3,則sinA=( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC中,BC=8,BC邊上的高h=4,D為BC上一點,EF∥BC交AB于E,交AC于F(EF不過A、B),設E到BC的距離為x,△DEF的面積為y,那么y關于x的函數(shù)圖象大致是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC中,AB=AC,D是BC中點,則下列結(jié)論不正確的是(  )

查看答案和解析>>

同步練習冊答案