解:(1)MN=AM+CN.
理由如下:
如圖,∵BC∥AD,AB=BC=CD,
∴梯形ABCD是等腰梯形,
∴∠A+∠BCD=180°,
把△ABM繞點(diǎn)B順時(shí)針旋轉(zhuǎn)使AB邊與BC邊重合,則△ABM≌△CBM′,
∴AM=CM′,BM=BM′,∠A=∠BCM′,∠ABM=∠M′BC,
∴∠BCM′+∠BCD=180°,
∴點(diǎn)M′、C、N三點(diǎn)共線,
∵∠MBN=
∠ABC,
∴∠M′BN=∠M′BC+∠CBN=∠ABM+∠CBN=∠ABC-∠MBN=
∠ABC,
∴∠MBN=∠M′BN,
在△BMN和△BM′N中,
∵
,
∴△BMN≌△BM′N(SAS),
∴MN=M′N,
又∵M(jìn)′N=CM′+CN=AM+CN,
∴MN=AM+CN;
(2)MN=CN-AM.
理由如下:如圖,作∠CBM′=∠ABM交CN于點(diǎn)M′,
∵∠ABC+∠ADC=180°,
∴∠BAD+∠C=360°-180°=180°,
又∵∠BAD+∠BAM=180°,
∴∠C=∠BAM,
在△ABM和△CBM′中,
,
∴△ABM≌△CBM′(ASA),
∴AM=CM′,BM=BM′,
∵∠MBN=
∠ABC,
∴∠M′BN=∠ABC-(∠ABN+∠CBM′)=∠ABC-(∠ABN+∠ABM)=∠ABC-∠MBN=
∠ABC,
∴∠MBN=∠M′BN,
在△MBN和△M′BN中,
∵
,
∴△MBN≌△M′BN(SAS),
∴MN=M′N,
∵M(jìn)′N=CN-CM′=CN-AM,
∴MN=CN-AM.
分析:(1)先判定梯形ABCD是等腰梯形,根據(jù)等腰梯形的性質(zhì)可得∠A+∠BCD=180°,再把△ABM繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°,點(diǎn)A與點(diǎn)C重合,點(diǎn)M到達(dá)點(diǎn)M′,根據(jù)旋轉(zhuǎn)變換的性質(zhì),△ABM和△CBM′全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AM=CM′,BM=BM′,根據(jù)全等三角形對(duì)應(yīng)角相等可得∠A=∠BCM′,∠ABM=∠M′BC,然后證明M′、C、N三點(diǎn)共線,再利用“邊角邊”證明△BMN和△BM′N全等,然后根據(jù)全等三角形對(duì)應(yīng)邊相等即可得證;
(2)在∠CBN內(nèi)部作∠CBM′=∠ABM交CN于點(diǎn)M′,然后證明∠C=∠BAM,再利用“角邊角”證明△ABM和△CBM′全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得AM=CM′,BM=BM′,再證明∠MBN=∠M′BN,利用“邊角邊”證明△MBN和△M′BN全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得MN=M′N,從而得到MN=CN-AM.
點(diǎn)評(píng):本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定與性質(zhì),等腰梯形的兩底角互補(bǔ),利用旋轉(zhuǎn)變換作輔助線,構(gòu)造出全等三角形,把MN、AM、CN通過等量轉(zhuǎn)化到兩個(gè)全等三角形的對(duì)應(yīng)邊是解題的關(guān)鍵,本題靈活性較強(qiáng),對(duì)同學(xué)們的能力要求較高.