解:(1)作CH⊥AB,垂足為點(diǎn)H,設(shè)CH=m;
∵
,∴
∵∠A=45°,∴AH=CH=m
∴
;
∴m=4;
∴△ABC的面積等于
;
(2)∵AH=CH=4,
∴
∵∠DPA=∠ACB,∠A=∠A,
∴△ADP∽△ABC;
∴
,即
∴
;
作PE⊥AC,垂足為點(diǎn)E;
∵∠A=45°,AP=x,
∴
;
∴所求的函數(shù)解析式為
,即
;
當(dāng)D到C時(shí),AP最大.
∵△CPA∽△BCA
∴
=
∴AP=
=
,
∴定義域?yàn)?<x<
;
(3)由△ADP∽△ABC,得
,即
;
∴
;
∵△PCD是以PD為腰的等腰三角形,
∴有PD=CD或PD=PC;
(i)當(dāng)點(diǎn)D在邊AC上時(shí),
∵∠PDC是鈍角,只有PD=CD
∴
;
解得
;
(ii)當(dāng)點(diǎn)D在邊AC的延長(zhǎng)線上時(shí),
,
如果PD=CD,那么
解得x=16
如果PD=PC,那么
解得x
1=32,
(不符合題意,舍去)
綜上所述,AP的長(zhǎng)為
,或16,或32.
分析:(1)過(guò)C作CH⊥AB于H,在Rt△ACH、Rt△CHB中,分別用CH表示出AH、BH的長(zhǎng),進(jìn)而由AB=AH+BH=7求出CH的長(zhǎng),即可得到AH、BH的長(zhǎng),由三角形的面積公式可求得△ABC的面積;
(2)由∠DPA=∠ACB,可證得△DPA∽△BCA,根據(jù)相似三角形得出的成比例線段可求得AD的表達(dá)式,進(jìn)而可得到CD的長(zhǎng);過(guò)P作PE⊥AC于E,根據(jù)AP的長(zhǎng)及∠A的度數(shù)即可求得PE的長(zhǎng);以CD為底、PE為高即可求得△PCD的面積,由此可得出y、x的函數(shù)關(guān)系;
求自變量取值的時(shí),關(guān)鍵是確定AP的最大值,由于P、D分別在線段AB、AC上,AP最大時(shí)D、C重合,可根據(jù)相似三角形得到的比例線段求出此時(shí)AP的長(zhǎng),由此可得到x的取值范圍;
(3)在(2)題中,已證得△ADP∽△ABC,根據(jù)相似三角形得到的比例線段,可得到PD的表達(dá)式;若△PDC是以PD為腰的等腰三角形,則可分兩種情況:PD=DC或PD=PC;
①如果D在線段AC上,此時(shí)∠PDC是鈍角,只有PD=DC這一種情況,聯(lián)立兩條線段的表達(dá)式,即可求得此時(shí)x的值;
②如果D在線段AC的延長(zhǎng)線上,可根據(jù)上面提到的兩種情況,分別列出關(guān)于x的等量關(guān)系式,即可求得x的值.
點(diǎn)評(píng):此題考查了解直角三角形、相似三角形的判定和性質(zhì)、等腰三角形的判定和性質(zhì)、二次函數(shù)的應(yīng)用等知識(shí),同時(shí)還考查了分類討論的數(shù)學(xué)思想方法,難度較大.