(2007•河池)若不等式組的解集在數(shù)軸上表示如圖,則這個(gè)不等式組是( )

A.
B.
C.
D.
【答案】分析:寫出圖中表示的兩個(gè)不等式的解集,這兩個(gè)式子就是不等式.這兩個(gè)式子組成的不等式組就滿足條件.
解答:解:由圖示可看出,從-1出發(fā)向右畫出的線且-1處是實(shí)心圓,表示x≥-1;
從2出發(fā)向左畫出的線且2處是空心圓,表示x<2,所以這個(gè)不等式組為
故選C.
點(diǎn)評:不等式組解集在數(shù)軸上的表示方法:把每個(gè)不等式的解集在數(shù)軸上表示出來(>,≥向右畫;<,≤向左畫),數(shù)軸上的點(diǎn)把數(shù)軸分成若干段,如果數(shù)軸的某一段上面表示解集的線的條數(shù)與不等式的個(gè)數(shù)一樣,那么這段就是不等式組的解集.有幾個(gè)就要幾個(gè).在表示解集時(shí)“≥”,“≤”要用實(shí)心圓點(diǎn)表示;“<”,“>”要用空心圓點(diǎn)表示.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年某實(shí)驗(yàn)中學(xué)九年級(下)第一次月考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2007•河池)若一個(gè)圖形繞著一個(gè)定點(diǎn)旋轉(zhuǎn)一個(gè)角α(0°<α≤180°)后能夠與原來的圖形重合,那么這個(gè)圖形叫做旋轉(zhuǎn)對稱圖形.例如:等邊三角形繞著它的中心旋轉(zhuǎn)120°(如圖),能夠與原來的等邊三角形重合,因而等邊三角形是旋轉(zhuǎn)對稱圖形.顯然,中心對稱圖形都是旋轉(zhuǎn)對稱圖形,但旋轉(zhuǎn)對稱圖形不一定是中心對稱圖形.下面四個(gè)圖形中,旋轉(zhuǎn)對稱圖形個(gè)數(shù)有( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江西省南昌市第28中學(xué)第一次月考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2007•河池)若一個(gè)圖形繞著一個(gè)定點(diǎn)旋轉(zhuǎn)一個(gè)角α(0°<α≤180°)后能夠與原來的圖形重合,那么這個(gè)圖形叫做旋轉(zhuǎn)對稱圖形.例如:等邊三角形繞著它的中心旋轉(zhuǎn)120°(如圖),能夠與原來的等邊三角形重合,因而等邊三角形是旋轉(zhuǎn)對稱圖形.顯然,中心對稱圖形都是旋轉(zhuǎn)對稱圖形,但旋轉(zhuǎn)對稱圖形不一定是中心對稱圖形.下面四個(gè)圖形中,旋轉(zhuǎn)對稱圖形個(gè)數(shù)有( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江西省九江市潯陽區(qū)中考模擬數(shù)學(xué)試卷(解析版) 題型:選擇題

(2007•河池)若一個(gè)圖形繞著一個(gè)定點(diǎn)旋轉(zhuǎn)一個(gè)角α(0°<α≤180°)后能夠與原來的圖形重合,那么這個(gè)圖形叫做旋轉(zhuǎn)對稱圖形.例如:等邊三角形繞著它的中心旋轉(zhuǎn)120°(如圖),能夠與原來的等邊三角形重合,因而等邊三角形是旋轉(zhuǎn)對稱圖形.顯然,中心對稱圖形都是旋轉(zhuǎn)對稱圖形,但旋轉(zhuǎn)對稱圖形不一定是中心對稱圖形.下面四個(gè)圖形中,旋轉(zhuǎn)對稱圖形個(gè)數(shù)有( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年江西省贛州市瑞金市日東初中中考數(shù)學(xué)模擬試卷(解析版) 題型:選擇題

(2007•河池)若一個(gè)圖形繞著一個(gè)定點(diǎn)旋轉(zhuǎn)一個(gè)角α(0°<α≤180°)后能夠與原來的圖形重合,那么這個(gè)圖形叫做旋轉(zhuǎn)對稱圖形.例如:等邊三角形繞著它的中心旋轉(zhuǎn)120°(如圖),能夠與原來的等邊三角形重合,因而等邊三角形是旋轉(zhuǎn)對稱圖形.顯然,中心對稱圖形都是旋轉(zhuǎn)對稱圖形,但旋轉(zhuǎn)對稱圖形不一定是中心對稱圖形.下面四個(gè)圖形中,旋轉(zhuǎn)對稱圖形個(gè)數(shù)有( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年廣西河池市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:填空題

(2007•河池)若⊙O和⊙O′相切,它們的半徑分別為5和3,則圓心距OO′為   

查看答案和解析>>

同步練習(xí)冊答案