已知點(diǎn)A(2,m),B(n,-5),根據(jù)下列條件求m,n的值.
(1)A,B兩點(diǎn)關(guān)于y軸對(duì)稱;
(2)AB∥y軸.

解:(1)根據(jù)軸對(duì)稱的性質(zhì),得m=-5,n=-2;

(2)根據(jù)平行線的性質(zhì),得m≠-5,n=2.
分析:(1)平面直角坐標(biāo)系中任意一點(diǎn)P(x,y),關(guān)于y軸的對(duì)稱點(diǎn)的坐標(biāo)是(-x,y);
(2)AB∥y軸就是說(shuō)明A,B兩點(diǎn)的橫坐標(biāo)相同.
點(diǎn)評(píng):本題比較容易,考查平面直角坐標(biāo)系中兩個(gè)關(guān)于坐標(biāo)軸成軸對(duì)稱的點(diǎn)的坐標(biāo)特點(diǎn).
這一類題目是需要識(shí)記的基礎(chǔ)題.解決的關(guān)鍵是對(duì)知識(shí)點(diǎn)的正確記憶.
注意:平行于x軸的直線的所有點(diǎn)的縱坐標(biāo)相等;平行于y軸的所有點(diǎn)的橫坐標(biāo)相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

5、已知點(diǎn)A(m,2m)和點(diǎn)B(3,m2-3),直線AB平行于x軸,則m等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,已知點(diǎn)A,B,C在⊙O上,AC∥OB,∠BOC=40°,則∠ABO=
20
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,已知點(diǎn)A1,A2,A3是拋物線y=
1
2
x2上的三點(diǎn),線段A1B1,A2B2,A3B3都垂直于x軸,垂足分別為點(diǎn)B1,B2,B3,延長(zhǎng)線段B2A2交線段A1A3于點(diǎn)C.
(1)在圖(1)中,若點(diǎn)A1,A2,A3的橫坐標(biāo)依次為1,2,3,求線段CA2的長(zhǎng);
(2)若將拋物線改為y=
1
2
x2-x+1,如圖2,點(diǎn)A1,A精英家教網(wǎng)2,A3的橫坐標(biāo)依次為三個(gè)連續(xù)整數(shù),其他條件不變,求線段CA2的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、對(duì)于點(diǎn)O、M,點(diǎn)M沿MO的方向運(yùn)動(dòng)到O左轉(zhuǎn)彎繼續(xù)運(yùn)動(dòng)到N,使OM=ON,且OM⊥ON,這一過(guò)程稱為M點(diǎn)關(guān)于O點(diǎn)完成一次“左轉(zhuǎn)彎運(yùn)動(dòng)”.正方形ABCD和點(diǎn)P,P點(diǎn)關(guān)于A左轉(zhuǎn)彎運(yùn)動(dòng)到P1,P1關(guān)于B左轉(zhuǎn)彎運(yùn)動(dòng)到P2,P2關(guān)于C左轉(zhuǎn)彎運(yùn)動(dòng)到P3,P3關(guān)于D左轉(zhuǎn)彎運(yùn)動(dòng)到P4,P4關(guān)于A左轉(zhuǎn)彎運(yùn)動(dòng)到P5,….
(1)請(qǐng)你在圖中用直尺和圓規(guī)在圖中確定點(diǎn)P1的位置;
(2)連接P1A、P1B,判斷△ABP1與△ADP之間有怎樣的關(guān)系?并說(shuō)明理由.
(3)以D為原點(diǎn)、直線AD為y軸建立直角坐標(biāo)系,并且已知點(diǎn)B在第二象限,A、P兩點(diǎn)的坐標(biāo)為(0,4)、(1,1),請(qǐng)你推斷:P4、P2009、P2010三點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(0,2)、B(4,0),點(diǎn)C、D分別在直線x=1與x=2上,且CD∥x軸,則AC+CD+DB的最小值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案