已知|y|≤1且2x+y=1,則2x2+16x+3y2的最小值為______.
設(shè)W=2x2+16x+3y2
∵2x+y=1,|y|≤1,
∴y=1-2x,-1≤y≤1,
∴-1≤1-2x≤1,
∴0≤x≤1,
∴W=2x2+16x+3(1-2x)2
=14x2+4x+3,
對(duì)稱軸為直線x=-
4
2×14
=-
1
7
,
∵a=14>0,
∴拋物線開口向上,在對(duì)稱軸右側(cè),y隨x的增大而增大,
當(dāng)0≤x≤1,x=0時(shí),W最小,
即W的最小值=3.
故答案為3.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知|y|≤1且2x+y=1,則2x2+16x+3y2的最小值為(  )
A、
19
2
B、3
C、
27
7
D、13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知|y|≤1且2x+y=1,則2x2+16x+3y2的最小值為
3
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

已知:,且2x-3y+4z=7.求:x+y-z的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年四川省南充高中自主招生考試數(shù)學(xué)試卷(解析版) 題型:選擇題

已知|y|≤1且2x+y=1,則2x2+16x+3y2的最小值為( )
A.
B.3
C.
D.13

查看答案和解析>>

同步練習(xí)冊(cè)答案