精英家教網(wǎng)如圖,點(diǎn)M,N都在反比例函數(shù)y=
kx
(k≠0)
的圖象上,MP⊥x軸于點(diǎn)P,MQ⊥y軸于點(diǎn)Q,則S矩形OQMP=
 
分析:由于點(diǎn)M,N是反比例函數(shù)y=
k
x
(k≠0)
的圖象上一點(diǎn),利用N點(diǎn)的橫縱坐標(biāo)即可得出反比例函數(shù)解析式,進(jìn)而求出S矩形OQMP=|k|即可求得.
解答:解:由題意得:N點(diǎn)的坐標(biāo)為:(-2,3),
∴反比例函數(shù)的解析式為:k=xy=-2×3=-6,
∴S矩形OQMP=|k|=6.
故答案為:6.
點(diǎn)評(píng):此題主要考查了反比例函數(shù) y=
k
x
中k的幾何意義,即過(guò)雙曲線上任意一點(diǎn)引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)?疾榈囊粋(gè)知識(shí)點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,平面直角坐標(biāo)系上有A(a,0)、B(0,-b)、C(b,0)三點(diǎn),且a≥b>0,拋物線y=(x-2)(x-m)-(n-2)(n-m). (m,n為常數(shù),且m+2≥2n>0),經(jīng)過(guò)點(diǎn)A和點(diǎn)C,頂點(diǎn)為P
(1)當(dāng)m,n滿足什么關(guān)系時(shí),S△AOB最大;
(3)如圖,當(dāng)△ACP為直角三角形時(shí),判斷以下命題是否正確:“直角三角形DEF的三個(gè)頂點(diǎn)都在這條拋物線上,且DF∥x軸,那么△ACP與△DEF斜邊上的高相等”,如果正確請(qǐng)予以證明,不正確請(qǐng)舉出反例.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,平面直角坐標(biāo)系中,矩形ABCO的邊OA在y正半軸上,OC在x正半軸上,點(diǎn)D是線段OC上一點(diǎn),過(guò)點(diǎn)D作DE⊥AD交直線BC于點(diǎn)E,以A、D、E為頂點(diǎn)作矩形ADEF.
(1)求證:△AOD∽△DCE;
(2)若點(diǎn)A坐標(biāo)為(0,4),點(diǎn)C坐標(biāo)為(7,0).
①當(dāng)點(diǎn)D的坐標(biāo)為(5,0)時(shí),拋物線y=ax2+bx+c過(guò)A、F、B三點(diǎn),求點(diǎn)F的坐標(biāo)及a、b、c的值;
②若點(diǎn)D(k,0)是線段OC上任意一點(diǎn),點(diǎn)F是否還在①中所求的拋物線上?如果在,請(qǐng)說(shuō)明理由;如果不在,請(qǐng)舉反例說(shuō)明;
(3)若點(diǎn)A的坐標(biāo)是(0,m),點(diǎn)C的坐標(biāo)是(n,0),當(dāng)點(diǎn)D在線段OC上運(yùn)動(dòng)時(shí),是否也存在一條拋物線,使得點(diǎn)F都落在該拋物線上?若存在,請(qǐng)直接用含m精英家教網(wǎng)、n的代數(shù)式表示該拋物線;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在四邊形ABCD的AB邊上任取一點(diǎn)E(點(diǎn)E不與點(diǎn)A、點(diǎn)B重合),分別連接ED、EC,可以把四邊形ABCD分成3個(gè)三角形.如果其中有2個(gè)三角形相似,我們就把點(diǎn)E叫做四邊形ABCD的AB邊上的相似點(diǎn);如果這3個(gè)三角形都相似,我們就把點(diǎn)E叫做四邊形ABCD的AB邊上的強(qiáng)相似點(diǎn).
(1)若圖1中,∠A=∠B=∠DEC=50°,說(shuō)明點(diǎn)E是四邊形ABCD的AB邊上的相似點(diǎn);
精英家教網(wǎng)
(2)①如圖2,畫(huà)出矩形ABCD的AB邊上的一個(gè)強(qiáng)相似點(diǎn).(要求:畫(huà)圖工具不限,不寫(xiě)畫(huà)法,保留畫(huà)圖痕跡或有必要的說(shuō)明.)
②對(duì)于任意的一個(gè)矩形,是否一定存在強(qiáng)相似點(diǎn)?如果一定存在,請(qǐng)說(shuō)明理由;如果不一定存在,請(qǐng)舉出反例.
(3)在梯形ABCD中,AD∥BC,AD<BC,∠B=90°,點(diǎn)E是梯形ABCD的AB邊上的一個(gè)強(qiáng)相似點(diǎn),判斷AE與BE的數(shù)量關(guān)系并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2010•同安區(qū)質(zhì)檢)如圖,在直角梯形ABCD中,∠A=90°,DC∥AB,CD=
12
AB=a,AD=3,E為線段BC上的動(dòng)點(diǎn)(不與點(diǎn)B、點(diǎn)C重合),EF⊥AB于F,EG⊥AD于G,設(shè)EF=x,EG=y.
(1)求y關(guān)于x的函數(shù)關(guān)系式(系數(shù)可含a),并寫(xiě)出自變量x的取值范圍;
(2)無(wú)論a為何正數(shù),在點(diǎn)E運(yùn)動(dòng)的過(guò)程中,我們都可以看出y隨著x的增大而減小.小明說(shuō)此時(shí)四邊形AFEG的周長(zhǎng)w也是隨著x的增大而減小.你認(rèn)為他說(shuō)的是否正確?如果正確,請(qǐng)說(shuō)明理由;如果不正確,請(qǐng)舉出反例.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖1,矩形ABCD中,AB:BC=2:3,點(diǎn)E、F分別在邊AD和CD上,且AF⊥BE于O,求
AF
BE
的值;
(2)在上面的問(wèn)題中,若
AF
BE
=k,通過(guò)變式,我們可以得到如下的兩個(gè)命題:
①若將AF沿直線AB方向平移到PQ,將BE沿直線AD方向平移到RS,然后將PQ與RS同時(shí)繞點(diǎn)O旋轉(zhuǎn)(保持PQ與RS垂直),則
PQ
RS
=k;
②設(shè)P、R、Q、S依次是矩形的邊AB、BC、CD、DA上的點(diǎn),若=k,則PQ⊥RS.精英家教網(wǎng)
(Ⅰ)判斷命題的真假性:①
 
;②
 
;(在橫線上填“真命題”或“假命題”)
(Ⅱ)若其中有假命題,請(qǐng)你在圖3中,用畫(huà)圖的方法舉反例進(jìn)行說(shuō)明;若以上兩個(gè)命題都是真命題,請(qǐng)選擇其中一個(gè)給予證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案