【題目】一種藥品經(jīng)兩次降價(jià),由每盒50元調(diào)至40.5元,平均每次降價(jià)的百分率是(
A.5%
B.10%
C.15%
D.20%

【答案】B
【解析】解:設(shè)平均每次降價(jià)的百分率是x,
根據(jù)題意得50(1﹣x)2=40.5
解得:x1=1.9(不合題意舍去),x2=0.1,
∴x=0.1.
故選B.
降低后的價(jià)格=降低前的價(jià)格×(1﹣降低率),如果設(shè)平均每次降價(jià)x,則第一次降低后的價(jià)格是50(1﹣x),那么第二次后的價(jià)格是50(1﹣x)2 , 即可列出方程求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把下列各數(shù)分別填入相應(yīng)的集合里
+6,﹣8,﹣0.4,0,230%, ,﹣1 ,﹣(﹣5),﹣|﹣2|,﹣ ,0.010010001…,﹣2.33…
(1)正數(shù)集合:{};
(2)負(fù)數(shù)集合:{ };
(3)整數(shù)集合:{};
(4)無理數(shù)集合:{}.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分7如圖,已知二次函數(shù)的圖象與x軸負(fù)半軸交點(diǎn)A-10),與y軸正半軸交與點(diǎn)B,頂點(diǎn)為P,且OB=3OA,一次函數(shù)y=kx+b的圖象經(jīng)過A、B

1求一次函數(shù)解析式;

2求頂點(diǎn)P的坐標(biāo);

3平移直線AB使其過點(diǎn)P,如果點(diǎn)M在平移后的直線上,且,求點(diǎn)M坐標(biāo)

(4)設(shè)拋物線的對(duì)稱軸交x軸與點(diǎn)E,聯(lián)結(jié)APy軸與點(diǎn)D,若點(diǎn)Q、N分別為兩線段PE、PD上的動(dòng)點(diǎn),聯(lián)結(jié)QDQN,請(qǐng)直接寫出QD+QN的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線交x軸于點(diǎn)C,交y軸于點(diǎn)D,與反比例函數(shù)的圖像交于兩點(diǎn)A、E,AG⊥x軸,垂足為點(diǎn)G,S△AOG=3.

(1)k = ;

(2)求證:AD =CE;

(3)如圖2,若點(diǎn)E為平行四邊形OABC的對(duì)角線AC的中點(diǎn),求平行四邊形OABC的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a﹣b=3,c+d=2,則(b+c)﹣(a﹣d)的值是(
A.﹣1
B.1
C.﹣5
D.15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD 中,AB=3,BC=4,E,F(xiàn) 是對(duì)角線 AC上的兩個(gè)動(dòng)點(diǎn),分別從 A,C 同時(shí)出發(fā), 相向而行,速度均為 1cm/s,運(yùn)動(dòng)時(shí)間為 t 秒,當(dāng)其中一個(gè)動(dòng)點(diǎn)到達(dá)后就停止運(yùn)動(dòng).
(Ⅰ)若 G,H 分別是 AB,DC 中點(diǎn),求證:四邊形 EGFH 始終是平行四邊形.
(Ⅱ)在(1)條件下,當(dāng) t 為何值時(shí),四邊形 EGFH 為矩形.
(Ⅲ)若 G,H 分別是折線 A﹣B﹣C,C﹣D﹣A 上的動(dòng)點(diǎn),與 E,F(xiàn) 相同的速度同時(shí)出發(fā),當(dāng) t 為何值時(shí),四邊形 EGFH 為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用正方形硬紙板做三棱柱盒子,每個(gè)盒子由3個(gè)長方形側(cè)面和2個(gè)正三角形底面組成,硬紙板以如圖兩種方法裁剪(裁剪后邊角料不再利用).

現(xiàn)有19張硬紙板,裁剪時(shí) x 張用A方法,其余用B方法.
(1)分別求裁剪出的側(cè)面和底面的個(gè)數(shù)(用含 x 的式子表示);
(2)若裁剪出的側(cè)面和底面恰好全部用完,問能做多少個(gè)盒子?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在10×10正方形網(wǎng)格中,每個(gè)小正方形的邊長均為1個(gè)單位長度.點(diǎn)B、C坐標(biāo)分別為(﹣4,2)、(﹣1,2).
(1)在圖中建立平面直角坐標(biāo)系,寫出點(diǎn)A的坐標(biāo);
(2)將△ABC先向下平移4個(gè)單位,再向右平移5個(gè)單位得到△A1B1C1 , 畫出△A1B1C1 , 并寫出點(diǎn)C1的坐標(biāo);
(3)M(a,b)是△ABC內(nèi)的一點(diǎn),△ABC經(jīng)過某種變換后點(diǎn)M的對(duì)應(yīng)點(diǎn)為M2(a+1,b﹣7),畫出△A2B2C2 . 并求出△A2B2C2的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列事件為必然事件的是(
A.任意擲一枚均勻的硬幣,正面朝上
B.籃球運(yùn)動(dòng)員投籃,投進(jìn)籃筐
C.一個(gè)星期有七天
D.打開電視機(jī),正在播放新聞

查看答案和解析>>

同步練習(xí)冊(cè)答案