如圖,已知E、F分別是△ABC的邊AB、AC上的兩個(gè)定點(diǎn),問在邊BC上能否找到一點(diǎn)M,使得△EFM的周長最?如果能,請作出來.

解:作法:
(1)作E關(guān)于BC的對稱點(diǎn)E1,
(2)連接E1F交BC于點(diǎn)M.
則點(diǎn)M就是所要求作的點(diǎn).
分析:由于△EFM的周長=EM+EF+FM,而EF是定值,故只需在BC上找一點(diǎn)M,使EM+FM最。绻O(shè)E關(guān)于BC的對稱點(diǎn)為E1,使EM+FM最小就是使E1M+FM最。
點(diǎn)評:解這類問題的關(guān)鍵是把兩條線段的和轉(zhuǎn)化為一條線段,運(yùn)用三角形三邊關(guān)系解決.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,已知E,F(xiàn)分別為平行四邊形ABCD邊AD,AB上的兩點(diǎn),則圖形中與△BEC的面積相等的三角形有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

30、如圖:已知邊長分別為a、b的正方形紙片和邊長為a、b的長方形紙片若干塊.
(1)利用這些紙片(必須每種紙片都要用到)拼成一個(gè)長方形(要求:用有刻度的三角板畫圖,所用的圖片與題目中提供的相應(yīng)圖片全等,拼得的長方形的長和寬不相等);
(2)根據(jù)你所拼的圖形,寫出一個(gè)與之對應(yīng)的多項(xiàng)式因式分解的式子.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•宜賓)如圖:已知D、E分別在AB、AC上,AB=AC,∠B=∠C,求證:BE=CD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知C、D分別在OA、OB上,并且OA=OB,OC=OD,AD和BC相交于E,則圖中全等三角形的對數(shù)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知M、N分別為線段AC、BC的中點(diǎn),且C是線段MB的中點(diǎn),線段MN=6cm,則線段AM=
4
4
cm,BN=
2
2
cm.

查看答案和解析>>

同步練習(xí)冊答案