【題目】如圖,在平行四邊形ABCD中,AD>AB.
(1)作出∠ABC的平分線(尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)若(1)中所作的角平分線交AD于點(diǎn)E,AF⊥BE,垂足為點(diǎn)O,交BC于點(diǎn)F,連接EF.求證:四邊形ABFE為菱形.
【答案】
(1)解:如圖所示:
(2)解:證明:∵BE平分∠ABC,
∴∠ABE=∠FBE,
∵∠EBF=∠AEB,
∴∠ABE=∠AEB,
∴AB=AE,
∵AO⊥BE,
∴BO=EO,
∵在△ABO和△FBO中,
,
∴△ABO≌△FBO(ASA),
∴AO=FO,
∵AF⊥BE,BO=EO,AO=FO,
∴四邊形ABFE為菱形
【解析】(1)根據(jù)角平分線的作法作出∠ABC的平分線即可;(2)首先根據(jù)角平分線的性質(zhì)以及平行線的性質(zhì)得出∠ABE=∠AEB,進(jìn)而得出△ABO≌△FBO,進(jìn)而利用AF⊥BE,BO=EO,AO=FO,得出即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解平行四邊形的性質(zhì)的相關(guān)知識(shí),掌握平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分,以及對(duì)菱形的判定方法的理解,了解任意一個(gè)四邊形,四邊相等成菱形;四邊形的對(duì)角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對(duì)角線若垂直,順理成章為菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為豐富學(xué)生的校園生活,準(zhǔn)備從某體育用品商店一次性購(gòu)買若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),若購(gòu)買3個(gè)足球和2個(gè)籃球共需310元,購(gòu)買2個(gè)足球和5個(gè)籃球共需500元.
(1)購(gòu)買一個(gè)足球,一個(gè)籃球各需多少元?
(2)根據(jù)學(xué)校的實(shí)際情況,需從該體育用品商店一次性購(gòu)買足球和籃球共96個(gè),要求購(gòu)買足球和籃球的總費(fèi)用不超過(guò)5720元,這所中學(xué)最多可以購(gòu)買多少個(gè)籃球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】張先生準(zhǔn)備在沙坪壩購(gòu)買一套小戶型商品房,他去某樓盤了解情況得知,該戶型商品房的單價(jià)是12000元/m2,面積如圖所示(單位:米,臥室的寬為a米,衛(wèi)生間的寬為x米),
(1) 用含a和x的式子表示該戶型的面積
(2) 售房部為張先生提供了以下兩種優(yōu)惠方案:
方案一:整套房的單價(jià)是12 000元/m2,其中廚房只算的面積;
方案二:整套房按原銷售總金額的9折出售,
若張先生購(gòu)買的戶型a=3,且分別用兩種方案購(gòu)房金額相等,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,點(diǎn)A(0,4),B(﹣3,4),C(﹣6,0),動(dòng)點(diǎn)P從點(diǎn)A出發(fā)以1個(gè)單位/秒的速度在y軸上向下運(yùn)動(dòng),動(dòng)點(diǎn)Q同時(shí)從點(diǎn)C出發(fā)以2個(gè)單位/秒的速度在x軸上向右運(yùn)動(dòng),過(guò)點(diǎn)P作PD⊥y軸,交OB于D,連接DQ.當(dāng)點(diǎn)P與點(diǎn)O重合時(shí),兩動(dòng)點(diǎn)均停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
(1)當(dāng)t=1時(shí),求線段DP的長(zhǎng);
(2)連接CD,設(shè)△CDQ的面積為S,求S關(guān)于t的函數(shù)解析式,并求出S的最大值;
(3)運(yùn)動(dòng)過(guò)程中是否存在某一時(shí)刻,使△ODQ與△ABC相似?若存在,請(qǐng)求出所有滿足要求的t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)九(1)班為了了解全班學(xué)生喜歡球類活動(dòng)的情況,采取全面調(diào)查的方法,從足球、乒乓球、籃球、排球等四個(gè)方面調(diào)查了全班學(xué)生的興趣愛好,根據(jù)調(diào)查的結(jié)果組建了4個(gè)興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖(如圖①,②,要求每位學(xué)生只能選擇一種自己喜歡的球類),請(qǐng)你根據(jù)圖中提供的信息解答下列問(wèn)題:
(1)九(1)班的學(xué)生人數(shù)為 , 并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)扇形統(tǒng)計(jì)圖中m= , n= , 表示“足球”的扇形的圓心角是度;
(3)排球興趣小組4名學(xué)生中有3男1女,現(xiàn)在打算從中隨機(jī)選出2名學(xué)生參加學(xué)校的排球隊(duì),請(qǐng)用列表或畫樹狀圖的方法求選出的2名學(xué)生恰好是1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,已知A(2,2)、B(4,0).若在坐標(biāo)軸上取點(diǎn)C,使△ABC為等腰三角形,則滿足條件的點(diǎn)C的個(gè)數(shù)是( )
A.5
B.6
C.7
D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC 中,AB=AC,∠C=70°,△AB′C′與△ABC 關(guān)于直線 EF對(duì)稱,∠CAF=10°,連接 BB′,則∠ABB′的度數(shù)是( )
A. 30° B. 35° C. 40° D. 45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,AB=8,BC=6.若DE是△ABC的中位線,延長(zhǎng)DE交△ABC的外角∠ACM的平分線于點(diǎn)F,則線段DF的長(zhǎng)為( )
A.7
B.8
C.9
D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A(a,0)和B(0,b)滿足,分別過(guò)點(diǎn)A、B作x軸、y軸的垂線交于點(diǎn)C,如圖,點(diǎn)P從原點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿著O-B-C-A-O的路線移動(dòng).
(1)寫出A、B、C三點(diǎn)的坐標(biāo);
(2)當(dāng)點(diǎn)P移動(dòng)了6秒時(shí),描出此時(shí)P點(diǎn)的位置,并寫出點(diǎn)P的位置坐標(biāo);
(3)連結(jié)(2)中B、P兩點(diǎn),將線段BP向下平移h個(gè)單位(h>0),得到B′P′,若B′P′將四邊形OACB的周長(zhǎng)分成相等的兩部分,求h的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com