在ABCD中,對(duì)角線AC與BD交于點(diǎn)O,∠BAD的平分線交直線BC于點(diǎn)E,交直線DC于點(diǎn)F.
(1)在圖1中,證明CE=CF;
(2)若,∠BAD=90°, G是EF的中點(diǎn)(如圖2),連結(jié)OG,判斷OG與BD的位置關(guān)系與數(shù)量關(guān)系,并給出證明;
(3)若∠ABC=120°,F(xiàn)G∥CE,F(xiàn)G=CE,連結(jié)OG(如圖3),判斷OG與BD的位置關(guān)系與數(shù)量關(guān)系,并給出證明.
(1)通過證明∠BAE=∠DAF從而得出EC=FC
(2)OG=BD, OG⊥BD
(3)BD=OG, OG⊥BD
解析試題分析:(1)在平行四邊形ABCD中,AD∥BC,AB∥CD, ∴∠DAF="∠CEF," ∠BAE=∠DFE,
∵∠BAE="∠DAF," ∴EC=FC (運(yùn)用兩直線平行,內(nèi)錯(cuò)角相等即可。)
(2)證明:連結(jié)BG,DG,
易知在Rt△ABE中∠BAE=45°,
所以BE=AB
∵BE=AB=DC,EG=CG,∠BEG=135°=∠DCG
∴△BEG≌△DCG,所以BG=DG
∴∠BGE=∠DGC
∴∠BGD=∠EGC=90°
∴△BDG是等腰直角三角形
∴∠BDG=45°
∴根據(jù)等腰三角形三線合一可得 OG=BD, OG⊥BD
(3) 證明:連BG、CG
易證四邊形CEGF是菱形
又∠ABC=120°
∴EG=CG
又∠BEG=120°=∠DCG,BE=AB=DC
∴△BEG≌△DCG
∴BG=DG,∠BGE=∠DGC
∴∠BGD=∠EGC=60°
∴△BGD是等邊三角形
∴∠BDG=60°
所以,根據(jù)三線合一可知OG⊥BD。在Rt△DEG中,OD=,又因?yàn)锽D=2OD,所以:BD=OG
考點(diǎn):全等三角形等
點(diǎn)評(píng):本題難度較大,主要考查學(xué)生對(duì)全等三角形的判斷及性質(zhì)綜合運(yùn)用能力,注意數(shù)形結(jié)合應(yīng)用,作輔助線構(gòu)成全等三角形為解題關(guān)鍵。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com