已知拋物線(b≠0)與x軸正半軸交于A(c,0),與y軸交于B點(diǎn),直線AB的解析式為y2=mx+n.
(1)求m-n+b的值;
(2)若拋物線頂點(diǎn)P關(guān)于y軸的對(duì)稱點(diǎn)恰好在直線AB上,M是線段BA上的點(diǎn),過點(diǎn)M作MN∥y軸交拋物線于點(diǎn)N.試問:當(dāng)點(diǎn)M從點(diǎn)B運(yùn)動(dòng)到點(diǎn)A時(shí),線段MN的長度如何變化?
【答案】分析:(1)把點(diǎn)A的坐標(biāo)代入拋物線解析式得到b=c-1;把點(diǎn)A、B的坐標(biāo)分別代入直線AB的解析式求得m=-1,n=c,將其代入所求的代數(shù)式并求值即可;
(2)由(1)中的拋物線解析式可以求得頂點(diǎn)P(,),則易求頂點(diǎn)P關(guān)于y軸對(duì)稱的點(diǎn)P′().由一次函數(shù)y2=-x+c圖象上點(diǎn)的坐標(biāo)特征可以
求得c=3.易求得,y2=-x+3.則MN=,所以由二次函數(shù)圖象的性質(zhì)進(jìn)行解答即可.
解答:解:(1)把A(c,0)代入拋物線得:-c2+bc+c=0,
如圖,∵A(c,0)在x軸正半軸,
∴c>0,
∴b=c-1,
∵拋物線與y軸交于B點(diǎn).
∴B(0,c)
把A(c,0)、B(0,c)分別代入y2=mx+n得:,
解得:
∴m-n+b=-1-c+c-1=-2;

(2)∴,y2=-x+c
∴頂點(diǎn)P(,)                 
∴頂點(diǎn)P關(guān)于y軸對(duì)稱的點(diǎn)P′(,
把P′代入y2=-x+c得:

解得:c1=3,c2=1(舍去)
∴當(dāng)c=3時(shí),b=c-1=2;
當(dāng)c=1時(shí),b=0;
∵b≠0
∴c=3,b=2,
,y2=-x+3
∵M(jìn)是線段AB上的點(diǎn),
∴y2≤y1,0≤x≤3.
∵M(jìn)N∥y軸
∴MN=
∴MN=
∵a=-1<0,開口向下,對(duì)稱軸為
∴當(dāng)時(shí),MN長度隨著x增大而增大;
當(dāng)時(shí),MN長度隨著x增大而減小.
點(diǎn)評(píng):本題綜合考查了一次函數(shù)、二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,待定系數(shù)法求一次函數(shù)、二次函數(shù)的解析式以及二次函數(shù)圖象的性質(zhì).綜合性強(qiáng),要求學(xué)生掌握數(shù)形結(jié)合的數(shù)學(xué)思想方法.(2)中弄清線段MN長度的函數(shù)意義是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=ax2+bx+c(a≠0)與x軸交于不同的兩點(diǎn)A(x1,0)和B(x2,0),與y軸的精英家教網(wǎng)正半軸交于點(diǎn)C.如果x1、x2是方程x2-x-6=0的兩個(gè)根(x1<x2),且△ABC的面積為
152

(1)求此拋物線的解析式;
(2)求直線AC和BC的方程;
(3)如果P是線段AC上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、C重合),過點(diǎn)P作直線y=m(m為常數(shù)),與直線BC交于點(diǎn)Q,則在x軸上是否存在點(diǎn)R,使得△PQR為等腰直角三角形?若存在,求出點(diǎn)R的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)廊橋是我國古老的文化遺產(chǎn).如圖,是某座拋物線型的廊橋示意圖,已知拋物線的函數(shù)表達(dá)式為y=-
140
x2+10,為保護(hù)廊橋的安全,在該拋物線上距水面AB高為8米的點(diǎn)E、F處要安裝兩盞警示燈,求這兩盞燈的水平距離EF(精確到1米).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=ax2(a>0)上有A、B兩點(diǎn),它們的橫坐標(biāo)分別為-1,2.如果△AOB(O是坐標(biāo)原點(diǎn))是直角三角形,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•廣州)已知拋物線y1=ax2+bx+c(a≠0,a≠c)過點(diǎn)A(1,0),頂點(diǎn)為B,且拋物線不經(jīng)過第三象限.
(1)使用a、c表示b;
(2)判斷點(diǎn)B所在象限,并說明理由;
(3)若直線y2=2x+m經(jīng)過點(diǎn)B,且于該拋物線交于另一點(diǎn)C(
ca
,b+8
),求當(dāng)x≥1時(shí)y1的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線經(jīng)過點(diǎn)A(1,0)、B(2,-3)、C(0,4)三點(diǎn).
(1)求此拋物線的解析式;
(2)如果點(diǎn)D在這條拋物線上,點(diǎn)D關(guān)于這條拋物線對(duì)稱軸的對(duì)稱點(diǎn)是點(diǎn)C,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案