(2006•廣安)如圖所示,在平面直角坐標(biāo)系xOy中,正方形OABC的邊長(zhǎng)為2cm,點(diǎn)A、C分別在y軸的負(fù)半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A、B,且12a+5c=0.
(1)求拋物線的解析式;
(2)如果點(diǎn)P由點(diǎn)A開(kāi)始沿AB邊以2cm/s的速度向點(diǎn)B移動(dòng),同時(shí)點(diǎn)Q由點(diǎn)B開(kāi)始沿BC邊以1cm/s的速度向點(diǎn)C移動(dòng).
①移動(dòng)開(kāi)始后第t秒時(shí),設(shè)S=PQ2(cm2),試寫出S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;
②當(dāng)S取得最小值時(shí),在拋物線上是否存在點(diǎn)R,使得以P、B、Q、R為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出R點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

【答案】分析:(1)根據(jù)已知條件,結(jié)合正方形的性質(zhì)求出A、B點(diǎn)的坐標(biāo),利用一般式根據(jù)待定系數(shù)法求解.
(2)①用t表示出PB、BQ的長(zhǎng),利用勾股定理建立起它們之間的關(guān)系;
②利用①中關(guān)系式,根據(jù)非負(fù)數(shù)的性質(zhì)求出S取最小值時(shí)的t的取值,計(jì)算出PB、BQ的長(zhǎng),然后根據(jù)R的位置進(jìn)行分類討論.
解答:解:(1)據(jù)題意知:A(0,-2),B(2,-2)
∵A點(diǎn)在拋物線上,
∴c=-2
∵12a+5c=0,
∴a=(1分)
由AB=2知拋物線的對(duì)稱軸為:x=1
即:-=1,b=-
∴拋物線的解析式為:y=x2-x-2.(3分)

(2)①由圖象知:PB=2-2t,BQ=t,
∴S=PQ2=PB2+BQ2=(2-2t)2+t2(4分)
即S=5t2-8t+4(0≤t≤1).(5分)
②假設(shè)存在點(diǎn)R,可構(gòu)成以P、B、R、Q為頂點(diǎn)的平行四邊形,
∵S=5t2-8t+4(0≤t≤1),
∴S=5(t2+(0≤t≤1),
∴當(dāng)t=時(shí),S取得最小值.(6分)
這時(shí)PB=2=0.4,BQ=0.8,P(1.6,-2),Q(2,-1.2).(7分)
分情況討論:
(A)假設(shè)R在BQ的右邊,這時(shí)QR=∥PB,則:
R的橫坐標(biāo)為2.4,R的縱坐標(biāo)為-1.2,即(2.4,-1.2),
代入y=x2-x-2,左右兩邊相等,
∴這時(shí)存在R(2.4,-1.2)滿足題意.(8分)
(B)假設(shè)R在BQ的左邊,這時(shí)PR=∥QB,
則:R的橫坐標(biāo)為1.6,縱坐標(biāo)為-1.2,即(1.6,-1.2)
代入y=x2-x-2,左右兩邊不相等,R不在拋物線上.(9分)
(C)假設(shè)R在PB的下方,這時(shí)PR=∥QB,
則:R(1.6,-2.8)代入y=x2-x-2,左右不相等,R不在拋物線上.
綜上所述,存在一點(diǎn)R(2.4,-1.2)滿足題意.(10分)
點(diǎn)評(píng):此題主要考查二次函數(shù)的有關(guān)知識(shí),是一個(gè)典型的動(dòng)點(diǎn)問(wèn)題.作為一個(gè)壓軸題,綜合性強(qiáng),難度較大,并運(yùn)用了分類討論思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年河南省南陽(yáng)市中考模擬數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•廣安)如圖所示,在平面直角坐標(biāo)系xOy中,正方形OABC的邊長(zhǎng)為2cm,點(diǎn)A、C分別在y軸的負(fù)半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A、B,且12a+5c=0.
(1)求拋物線的解析式;
(2)如果點(diǎn)P由點(diǎn)A開(kāi)始沿AB邊以2cm/s的速度向點(diǎn)B移動(dòng),同時(shí)點(diǎn)Q由點(diǎn)B開(kāi)始沿BC邊以1cm/s的速度向點(diǎn)C移動(dòng).
①移動(dòng)開(kāi)始后第t秒時(shí),設(shè)S=PQ2(cm2),試寫出S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;
②當(dāng)S取得最小值時(shí),在拋物線上是否存在點(diǎn)R,使得以P、B、Q、R為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出R點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年河北省廊坊市文安縣中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2006•廣安)如圖所示,在平面直角坐標(biāo)系xOy中,正方形OABC的邊長(zhǎng)為2cm,點(diǎn)A、C分別在y軸的負(fù)半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A、B,且12a+5c=0.
(1)求拋物線的解析式;
(2)如果點(diǎn)P由點(diǎn)A開(kāi)始沿AB邊以2cm/s的速度向點(diǎn)B移動(dòng),同時(shí)點(diǎn)Q由點(diǎn)B開(kāi)始沿BC邊以1cm/s的速度向點(diǎn)C移動(dòng).
①移動(dòng)開(kāi)始后第t秒時(shí),設(shè)S=PQ2(cm2),試寫出S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;
②當(dāng)S取得最小值時(shí),在拋物線上是否存在點(diǎn)R,使得以P、B、Q、R為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出R點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年河南省漯河市龍城一中中考數(shù)學(xué)最后一次模擬試卷(解析版) 題型:解答題

(2006•廣安)如圖所示,在平面直角坐標(biāo)系xOy中,正方形OABC的邊長(zhǎng)為2cm,點(diǎn)A、C分別在y軸的負(fù)半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A、B,且12a+5c=0.
(1)求拋物線的解析式;
(2)如果點(diǎn)P由點(diǎn)A開(kāi)始沿AB邊以2cm/s的速度向點(diǎn)B移動(dòng),同時(shí)點(diǎn)Q由點(diǎn)B開(kāi)始沿BC邊以1cm/s的速度向點(diǎn)C移動(dòng).
①移動(dòng)開(kāi)始后第t秒時(shí),設(shè)S=PQ2(cm2),試寫出S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;
②當(dāng)S取得最小值時(shí),在拋物線上是否存在點(diǎn)R,使得以P、B、Q、R為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出R點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年廣西桂林市初中畢業(yè)班中考適應(yīng)性檢測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題

(2006•廣安)如圖所示,在平面直角坐標(biāo)系xOy中,正方形OABC的邊長(zhǎng)為2cm,點(diǎn)A、C分別在y軸的負(fù)半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A、B,且12a+5c=0.
(1)求拋物線的解析式;
(2)如果點(diǎn)P由點(diǎn)A開(kāi)始沿AB邊以2cm/s的速度向點(diǎn)B移動(dòng),同時(shí)點(diǎn)Q由點(diǎn)B開(kāi)始沿BC邊以1cm/s的速度向點(diǎn)C移動(dòng).
①移動(dòng)開(kāi)始后第t秒時(shí),設(shè)S=PQ2(cm2),試寫出S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;
②當(dāng)S取得最小值時(shí),在拋物線上是否存在點(diǎn)R,使得以P、B、Q、R為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出R點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年四川省廣安市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•廣安)如圖所示,在平面直角坐標(biāo)系xOy中,正方形OABC的邊長(zhǎng)為2cm,點(diǎn)A、C分別在y軸的負(fù)半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A、B,且12a+5c=0.
(1)求拋物線的解析式;
(2)如果點(diǎn)P由點(diǎn)A開(kāi)始沿AB邊以2cm/s的速度向點(diǎn)B移動(dòng),同時(shí)點(diǎn)Q由點(diǎn)B開(kāi)始沿BC邊以1cm/s的速度向點(diǎn)C移動(dòng).
①移動(dòng)開(kāi)始后第t秒時(shí),設(shè)S=PQ2(cm2),試寫出S與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;
②當(dāng)S取得最小值時(shí),在拋物線上是否存在點(diǎn)R,使得以P、B、Q、R為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出R點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案