已知關于x的一元二次方程(m2-4)x2+(2m-1)x+1=0的兩實根的倒數(shù)和為S,則S的最小值為


  1. A.
    -6
  2. B.
    -3
  3. C.
    5
  4. D.
    6
A
分析:首先設x1、x2為方程的兩個實數(shù)根,利用根與系數(shù)的關系求得兩根的和與積,進一步利用兩實根的倒數(shù)和為S,結合根的判別式,探究得出S的最小值即可.
解答:設x1、x2為方程(m2-4)x2+(2m-1)x+1=0的兩個實數(shù)根,
則x1+x2=-,x1x2=,
而S=+==1-2m;
b2-4ac=(2m-1)2-4(m2-4)=-4m+17≥0,m≤
m2-4≠0,m≠±2,
所以當m=取得最小值,為1-2m=-7.5.
故選:A.
點評:此題考查根與系數(shù)的關系,根的判別式以及一元二次方程的意義等知識點.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知關于x的一元二次x2+(2k-3)x+k2=0的兩個實數(shù)根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關于x的一元二次2x2-(2m2-1)x-m-4=0有一個實數(shù)根為
32

(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關于x的一元二次x2-6x+k+1=0的兩個實數(shù)根x1,x2,
1
x1
+
1
x2
=1
,則k的值是( 。
A、8B、-7C、6D、5

查看答案和解析>>

科目:初中數(shù)學 來源:第23章《一元二次方程》中考題集(23):23.3 實踐與探索(解析版) 題型:解答題

已知關于x的一元二次2x2-(2m2-1)x-m-4=0有一個實數(shù)根為
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《一元二次方程》(04)(解析版) 題型:解答題

(2007•汕頭)已知關于x的一元二次2x2-(2m2-1)x-m-4=0有一個實數(shù)根為
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

同步練習冊答案