(2009•朝陽)如圖,△ABC是等邊三角形,點(diǎn)D是BC邊上任意一點(diǎn),DE⊥AB于點(diǎn)E,DF⊥AC于點(diǎn)F.若BC=2,則DE+DF=   
【答案】分析:根據(jù)題中所給的條件,在直角三角形中解題.運(yùn)用三角函數(shù)的定義求解.
解答:解:設(shè)BD=x,則CD=2-x.
∵△ABC是等邊三角形,
∴∠B=∠C=60°.
由三角函數(shù)得,
ED=x,
同理,DF=
∴DE+DF=x+=
點(diǎn)評(píng):此題主要考查了學(xué)生運(yùn)用等邊三角形的性質(zhì)及常用三角函數(shù)來解直角三角形的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2009•朝陽)如圖①,在梯形ABCD中,CD∥AB,∠ABC=90°,∠DAB=60°,AD=2,CD=4.另有一直角三角形EFG,∠EFG=90°,點(diǎn)G與點(diǎn)D重合,點(diǎn)E與點(diǎn)A重合,點(diǎn)F在AB上,讓△EFG的邊EF在AB上,點(diǎn)G在DC上,以每秒1個(gè)單位的速度沿著AB方向向右運(yùn)動(dòng),如圖②,點(diǎn)F與點(diǎn)B重合時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)在上述運(yùn)動(dòng)過程中,請(qǐng)分別寫出當(dāng)四邊形FBCG為正方形和四邊形AEGD為平行四邊形時(shí)對(duì)應(yīng)時(shí)刻t的值或范圍;
(2)以點(diǎn)A為原點(diǎn),以AB所在直線為x軸,過點(diǎn)A垂直于AB的直線為y軸,建立如圖③所示的坐標(biāo)系.求過A,D,C三點(diǎn)的拋物線的解析式;
(3)探究:延長(zhǎng)EG交(2)中的拋物線于點(diǎn)Q,是否存在這樣的時(shí)刻t使得△ABQ的面積與梯形ABCD的面積相等?若存在,求出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2009•朝陽)如圖①,點(diǎn)A′,B′的坐標(biāo)分別為(2,0)和(0,-4),將△A′B′O繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)90°后得△ABO,點(diǎn)A′的對(duì)應(yīng)點(diǎn)是點(diǎn)A,點(diǎn)B′的對(duì)應(yīng)點(diǎn)是點(diǎn)B.
(1)寫出A,B兩點(diǎn)的坐標(biāo),并求出直線AB的解析式;
(2)將△ABO沿著垂直于x軸的線段CD折疊,(點(diǎn)C在x軸上,點(diǎn)D在AB上,點(diǎn)D不與A,B重合)如圖②,使點(diǎn)B落在x軸上,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)E.設(shè)點(diǎn)C的坐標(biāo)為(x,0),△CDE與△ABO重疊部分的面積為S.
①試求出S與x之間的函數(shù)關(guān)系式(包括自變量x的取值范圍);
②當(dāng)x為何值時(shí),S的面積最大,最大值是多少?
③是否存在這樣的點(diǎn)C,使得△ADE為直角三角形?若存在,直接寫出點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年遼寧省朝陽市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•朝陽)如圖①,點(diǎn)A′,B′的坐標(biāo)分別為(2,0)和(0,-4),將△A′B′O繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)90°后得△ABO,點(diǎn)A′的對(duì)應(yīng)點(diǎn)是點(diǎn)A,點(diǎn)B′的對(duì)應(yīng)點(diǎn)是點(diǎn)B.
(1)寫出A,B兩點(diǎn)的坐標(biāo),并求出直線AB的解析式;
(2)將△ABO沿著垂直于x軸的線段CD折疊,(點(diǎn)C在x軸上,點(diǎn)D在AB上,點(diǎn)D不與A,B重合)如圖②,使點(diǎn)B落在x軸上,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)E.設(shè)點(diǎn)C的坐標(biāo)為(x,0),△CDE與△ABO重疊部分的面積為S.
①試求出S與x之間的函數(shù)關(guān)系式(包括自變量x的取值范圍);
②當(dāng)x為何值時(shí),S的面積最大,最大值是多少?
③是否存在這樣的點(diǎn)C,使得△ADE為直角三角形?若存在,直接寫出點(diǎn)C的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年遼寧省朝陽市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•朝陽)如圖①,在梯形ABCD中,CD∥AB,∠ABC=90°,∠DAB=60°,AD=2,CD=4.另有一直角三角形EFG,∠EFG=90°,點(diǎn)G與點(diǎn)D重合,點(diǎn)E與點(diǎn)A重合,點(diǎn)F在AB上,讓△EFG的邊EF在AB上,點(diǎn)G在DC上,以每秒1個(gè)單位的速度沿著AB方向向右運(yùn)動(dòng),如圖②,點(diǎn)F與點(diǎn)B重合時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)在上述運(yùn)動(dòng)過程中,請(qǐng)分別寫出當(dāng)四邊形FBCG為正方形和四邊形AEGD為平行四邊形時(shí)對(duì)應(yīng)時(shí)刻t的值或范圍;
(2)以點(diǎn)A為原點(diǎn),以AB所在直線為x軸,過點(diǎn)A垂直于AB的直線為y軸,建立如圖③所示的坐標(biāo)系.求過A,D,C三點(diǎn)的拋物線的解析式;
(3)探究:延長(zhǎng)EG交(2)中的拋物線于點(diǎn)Q,是否存在這樣的時(shí)刻t使得△ABQ的面積與梯形ABCD的面積相等?若存在,求出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國(guó)中考數(shù)學(xué)試題匯編《相交線與平行線》(02)(解析版) 題型:選擇題

(2009•朝陽)如圖,已知AB∥CD,若∠A=20°,∠E=35°,則∠C等于( )

A.20°
B.35°
C.45°
D.55°

查看答案和解析>>

同步練習(xí)冊(cè)答案