若一個三角形的3個外角的度數(shù)之比為2:3:4,則與之相應的3個內(nèi)角的度數(shù)之比為______.
∵外角的度數(shù)之比為2:3:4,
∴設三個外角分別是2x、3x、4x,則有:
2x+3x+4x=360,
解得x=40,2x=80,3x=120,4x=160.
根據(jù)鄰補角的定義,得:
其對應的三個內(nèi)角是100°、60°、20°,故它們的比是5:3:1.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

用剪刀將形狀如圖(甲)所示的矩形紙片ABCD沿著直線CM剪成兩部分,其中M為AD的中點.用這兩部分紙片可以拼成一些新圖形,例如圖(乙)中的Rt△BCE就是拼成的一個圖形.
(1)用這兩部分紙片除了可以拼成圖乙中的Rt△BCE外,還可以拼成一些四邊形.請你試一試,把拼好的四邊形分別畫在圖丙、圖丁的虛框內(nèi);
(2)若利用這兩部分紙片拼成的Rt△BCE是等腰直角三角形,設原矩形紙片中的邊AB和BC的長分別為a厘米、b厘米,且a、b恰好是關于x的方程x2-(m-1)x+m+1=0的兩個實數(shù)根,試求出原矩形紙片的面積.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•廊坊一模)圓的滾動問題探索:
(1)如圖1,一個半徑為r的圓沿直線方向從A地滾動到B地,若AB的長為m,則該圓在滾動過程中自轉(zhuǎn)了
m
2πr
m
2πr
圈.(用含的式子表示)
試驗:
現(xiàn)有兩個半徑相等的圓(如圖5),將⊙O2固定,⊙O1沿定圓的周圍滾動,滾動時兩圓保持相外切的位置關系.當⊙O1沿⊙O2周圍滾動一周回到原來的位置時,⊙O1自轉(zhuǎn)了2圈,而⊙O1的圓心運動的線路也是一個圓,而這個圓的周長恰好是⊙O1的周長的2倍.
(2)如圖2,⊙O1的半徑為r,⊙O2的半徑為R(R>r),現(xiàn)將⊙O2固定,讓,⊙O1沿⊙O2的周圍滾動,滾動時兩圓保持相外切的位置關系.當⊙O1沿⊙O2沿周圍滾動一周回到原來的位置時,⊙O1自轉(zhuǎn)了
R+r
r
R+r
r
圈;

(3)如圖3,⊙O1,和⊙O2內(nèi)切,⊙O1的半徑為r,⊙O2的半徑為R(R>r),現(xiàn)將⊙O2固定,讓,⊙O1沿⊙O2的邊緣滾動,動時兩圓保持相內(nèi)切的位置關系.當⊙O1沿⊙O2邊緣滾動一圈回到原來的位置時,⊙O1自轉(zhuǎn)了
R-r
r
R-r
r
圈.
解決問題:
如圖4,一個等邊三角形與它的一邊相切的圓的周長相等,當此圓按箭頭方向從某一位置沿等邊三角形的三邊作無滑動滾動,直至回到原來的位置時,該圓自轉(zhuǎn)了多少圈?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在△ABC中,AB、BC、AC三邊的長分別為
5
10
、
13
,求這個三角形的面積.小華同學在解答這道題時,先畫一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖1所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積.這種方法叫做構(gòu)圖法.
(1)△ABC的面積為:
3.5
3.5

(2)若△DEF三邊的長分別為
5
、
8
17
,請在圖2的正方形網(wǎng)格中畫出相應的△DEF,并利用構(gòu)圖法求出它的面積為
3
3

(3)如圖3,△ABC中,AG⊥BC于點G,以A為直角頂點,分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點E、F作射線GA的垂線,垂足分別為P、Q.試探究EP與FQ之間的數(shù)量關系,并證明你的結(jié)論.
(4)如圖4,一個六邊形的花壇被分割成7個部分,其中正方形PRBA,RQDC,QPFE的面積分別為13m2、25m2、36m2,則六邊形花壇ABCDEF的面積是
110
110
m2

查看答案和解析>>

科目:初中數(shù)學 來源:四川省同步題 題型:單選題

下列說法錯誤的個數(shù):(1)、任意一個三角形的三條高至少有一條在此三角形內(nèi)部;(2)、若線段a、b、c滿足,以為邊能構(gòu)成一個三角形;(3)、一個多邊形從一個頂點共引出三條對角線,此多邊形一定是五邊形(4)、多邊形中內(nèi)角最多有2個是銳角;(5)、一個三角形中,至少有一個角不小于;(6)、以為底的等腰三角形其腰長一定大于;(7)、一個多邊形增加一條邊,那它的外均增加。
[     ]
A、1個
B、2個
C、3個
D、4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

下列說法錯誤的個數(shù):                                  (      )

(1)、任意一個三角形的三條高至少有一條在此三角形內(nèi)部;(2)、若線段a、b、c滿足,為邊能構(gòu)成一個三角形;(3)、一個多邊形從一個頂點共引出三條對角線,此多邊形一定是五邊形(4)、多邊形中內(nèi)角最多有2個是銳角;(5)、一個三角形中,至少有一個角不小于(6)、以為底的等腰三角形其腰長一定大于(7)、一個多邊形增加一條邊,那它的外均增加

A、1個       B、2個     C、3個      D、4個

查看答案和解析>>

同步練習冊答案