如圖所示,⊙O的半徑OD為5cm,直線l⊥OD,垂足為O,則直線l沿射線OD方向平移______cm時(shí)與⊙O相切.
∵直線l與⊙O相切,
∴OD=5,
又∵此時(shí)l過(guò)圓心,故需平移5cm.
故答案為:5.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,已知點(diǎn)A的坐標(biāo)為(
3
,3),AB丄x軸,垂足為B,連接OA,反比例函數(shù)y=
k
x
(k>0)的圖象與線段OA、AB分別交于點(diǎn)C、D.若AB=3BD,以點(diǎn)C為圓心,CA的
5
4
倍的長(zhǎng)為半徑作圓,則該圓與x軸的位置關(guān)系是______(填”相離”,“相切”或“相交“).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,∠ABC=90°,AB=6,BC=8.以AB為直徑的⊙O交AC于D,E是BC的中點(diǎn),連接ED并延長(zhǎng)交BA的延長(zhǎng)線于點(diǎn)F.
(1)求證:DE是⊙O的切線;
(2)求DB的長(zhǎng);
(3)求S△FAD:S△FDB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,△ABC內(nèi)接于半圓,AB為直徑,過(guò)點(diǎn)A作直線MN,若∠MAC=∠ABC.
(1)求證:MN是半圓的切線.
(2)設(shè)D是弧AC的中點(diǎn),連接BD交AC于G,過(guò)D作DE⊥AB于E,交AC于F,求證:FD=FG.
(3)在(2)的條件下,若△DFG的面積為4.5,且DG=3,GC=4,試求△BCG的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,A是半徑為2的⊙O上的一點(diǎn),P是OA延長(zhǎng)線上的一動(dòng)點(diǎn),過(guò)P作⊙O的切線,切點(diǎn)為B,設(shè)PA=m,PB=n.
(1)當(dāng)n=4時(shí),求m的值;
(2)⊙O上是否存在點(diǎn)C,使△PBC為等邊三角形?若存在,請(qǐng)求出此時(shí)m的值;若不存在,請(qǐng)說(shuō)明理由;
(3)當(dāng)m為何值時(shí),⊙O上存在唯一點(diǎn)M和PB構(gòu)成以PB為底的等腰三角形?并直接答出:此時(shí)⊙O上能與PB構(gòu)成等腰三角形的點(diǎn)共有幾個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB是⊙O的直徑,AD是弦,∠DAB=22.5°,延長(zhǎng)AB到點(diǎn)C,使得∠ACD=45°
(1)試判斷CD和⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若AB=4,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知AB是⊙O的直徑,AC為弦,且平分∠BAD,AD⊥CD,垂足為D.
求證:CD是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,已知△ABC中,AB=AC,以AB為直徑作⊙O交BC于D,交AC于E,過(guò)D作DF⊥AC于F
(1)求證:DF是⊙O的切線;
(2)連接DE,且AB=4,若∠FDC=30°,試求△CDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,AB是⊙O的直徑,BC是弦,∠B=30°,延長(zhǎng)BA到D,使∠BDC=30°.
(1)求證:DC是⊙O的切線;
(2)若AB=2,求DC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案